Publications by authors named "Xiu-Wen Kang"

Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.

View Article and Find Full Text PDF

Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.

View Article and Find Full Text PDF

The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps.

View Article and Find Full Text PDF

Purpose: Sepsis-induced acute lung injury is related to high mortality. MiR-2113 possesses important functions in human diseases. This research aimed to clarify the role and mechanism of miR-2113 in sepsis-induced acute lung injury.

View Article and Find Full Text PDF

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial.

View Article and Find Full Text PDF

Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F).

View Article and Find Full Text PDF

Phototriggers are useful molecular tools to initiate reactions in enzymes by light for the purpose of photoenzymatic design and mechanistic investigations. Here, we incorporated the non-natural amino acid 5-cyanotryptophan (W5CN) in a polypeptide scaffold and resolved the photochemical reaction of the W5CN-W motif using femtosecond transient UV/Vis and mid-IR spectroscopy. We identified a marker band of ∼2037 cm-1 from the CN stretch of the electron transfer intermediate W5CN·- in the transient IR measurement and found UV/Vis spectroscopic evidence for the W·+ radical at 580 nm.

View Article and Find Full Text PDF

Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model.

View Article and Find Full Text PDF

We present direct observation of ultrafast proton rocking in the central motif of a BLUF domain protein scaffold. The mutant design has taken consideration of modulating the proton-coupled electron transfer (PCET) driving forces by replacing Tyr in the original motif with Trp, in order to remove the interference of a competing electron transfer pathway. Using femtosecond pump-probe spectroscopy and detailed kinetics analysis, we resolved an electron-transfer-coupled Grotthuss-type forward and reverse proton rocking along the FMN-Gln-Trp proton relay chain.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stem cells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, the mechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects of BMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) injury.

View Article and Find Full Text PDF

Photoacoustic spectroscopy in a differential Helmholtz resonator has been employed with near-IR and red diode lasers for the detection of CO, HS and O in 1 bar of air/N and natural gas, in static and flow cell measurements. With the red distributed feedback (DFB) diode laser, O can be detected at 764.3 nm with a noise equivalent detection limit of 0.

View Article and Find Full Text PDF