Directly targeting caveolar caveolin-1 is a potential mechanism to regulate endothelial permeability, especially during oxidative stress, but little evidence on the topic limits therapeutics discoveries. In this study, we investigated the pharmacological effect of an antioxidant LM49 (5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanoe) and its five diphenylmethanone derivatives on endothelial permeability and establish two distinct mechanisms of action. Multiplex molecular assays with theoretical modeling indicate that diphenylmethanone molecules, including LM49, directly bind the caveolin-1 steric pocket of ASN53/ARG54, ILE49/ASP50, ILE18, LEU59, ASN60, GLU48 and ARG19 residues.
View Article and Find Full Text PDF2,4',5'-Trihydroxyl-5,2'-dibromo diphenylmethanone (LM49), an active halophenol derivative synthesized by our group, which exhibits a broad spectrum of therapeutic properties, such as antioxidant and anti-inflammatory activities. In this study, we found LM49 could obviously attenuate acute liver injury induced by lipopolysaccharide (LPS) in mice by polarizing macrophages. The protective effect was described by reducing the hepatic inflammation and improving hepatic function using aspartate transaminase (AST) and alanine transaminase (ALT) assay.
View Article and Find Full Text PDFBackground: 2,4',5'-Trihydroxyl-5,2'-dibromo diphenylmethanone (LM49), a novel active halophenol derivative synthesized by our group from marine plants, exhibits strong anti-inflammatory activities. However, molecular machineries involved in its effect have not been fully identified. The study was aimed to investigate the anti-inflammatory effect of LM49 on lipopolysaccharide (LPS)-stimulated RAW264.
View Article and Find Full Text PDFBased on a foregoing gram-scale laboratory process, an efficient scale-up preparation process of 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone (), a new acute pyelonephritis candidate drug, was developed and validated aiming to reduce by-products and achieve better impurity profiles. Meanwhile, the polymorph of and process-related impurities were also investigated. Ultimately, the optimal reaction conditions were verified by evaluating the impurity profiles and their formation during the synthesis.
View Article and Find Full Text PDF5,2'-Dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49) exerted therapeutic effects against rat acute pyelonephritis by regulating immune responses, especially affecting T lymphocytes. However, its underlying action mechanism remains unclear. T lymphocytes play an irreplaceable role in immune responses.
View Article and Find Full Text PDFInflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone (TDD), possess anti-atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.
View Article and Find Full Text PDFAntibiotics are still the primary therapy for acute pyelonephritis (APN); rarely, natural polyphenols are also used. LM49 is a novel marine bromophenol derivative displaying strong anti-inflammatory effects. We investigated the therapeutic efficacy of LM49 in an experimental rat model of APN.
View Article and Find Full Text PDFWe previously reported 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanoe (), a bromophenol analogue that shows strong protection from oxidative stress injury owing to its superior anti-inflammatory, antioxidant, and anti-apoptotic properties. A series of novel nitrogen-containing heterocycle bromophenols were herein synthesized by introducing substituted piperidine, piperazine, and imidazole to modify 2-position of the lead compound . By further evaluating their cytoprotective activity against H₂O₂ induced injury in EA.
View Article and Find Full Text PDFIncreasing evidence has demonstrated that heme oxygenase-1 (HO-1) is a key enzyme triggered by cellular stress, exhibiting cytoprotective, antioxidant, and anti-inflammatory abilities. Previously, we prepared a series of novel active halophenols possessing strong antioxidant activities in vitro and in vivo. In the present study, we demonstrated that these halophenols exhibited significant protective effects against HO-induced injury in EA.
View Article and Find Full Text PDFA series of novel 4-substituted benzoxazolone derivatives was synthesized, characterized and evaluated as human soluble epoxide hydrolase (sEH) inhibitors and anti-inflammatory agents. Some compounds showed moderate sEH inhibitory activities in vitro, and two novel compounds, 3g and 4j, exhibited the highest activities with IC50 values of 1.72 and 1.
View Article and Find Full Text PDFA series of new halophenols were synthesized, and their structures were established on the basis of 1H, 13C NMR and mass spectral data. All of the prepared compounds were screened for their in vitro protein tyrosine kinase (PTK) and vascular smooth muscle cell (VSMC) proliferation inhibitory activity. Twelve halophenols showed significant PTK inhibitory activity, most of them exhibited stronger activities than that of genistein, a positive reference compound.
View Article and Find Full Text PDFA series of new benzophenone and diphenylmethane halophenol derivatives were prepared. Their structures were established based on (1)H NMR, (13)C NMR and HRMS data. All prepared compounds were screened for their in vitro protein tyrosine kinase (PTK) inhibitory activities.
View Article and Find Full Text PDFA series of novel furan-2-yl(phenyl)methanone derivatives were synthesized, and their structures were established on the basis of ¹H-NMR, ¹³C-NMR and mass spectral data. All the prepared compounds were screened for their in vitro protein tyrosine kinase inhibitory activity and several new derivatives exhibited promising activity, which, in some cases, was identical to, or even better than that of genistein, a positive reference compound. The preliminary structure-activity relationships of these compounds were investigated and are discussed.
View Article and Find Full Text PDFA series of new flavanone derivatives of farrerol was synthesized by a convenient method. The in vitro anti-tumor activity of these compounds was evaluated against human Bel-7402, HL-60, BGC-823 and KB cell lines, the protein tyrosine kinase (PTK) inhibitor activity was also tested. Their cytoprotective activity was tested using hydrogen peroxide (H2O2)-induced injury in human umbilical vein endothelial cells.
View Article and Find Full Text PDF