Proc Natl Acad Sci U S A
September 2024
Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024).
View Article and Find Full Text PDFCarotenoids are involved in many essential physiological functions and are produced from geranylgeranyl pyrophosphate through synthase, desaturase, and cyclase activities. In the pea aphid (Acyrthosiphon pisum), the duplication of carotenoid biosynthetic genes, including carotenoid synthases/cyclases (ApCscA-C) and desaturases (ApCdeA-D), through horizontal gene transfer from fungi has been detected, and ApCdeB has known dehydrogenation functions. However, whether other genes contribute to aphid carotenoid biosynthesis, and its specific regulatory pathway, remains unclear.
View Article and Find Full Text PDFThe citrus leaf beetle, Clitea metallica, is a specialized citrus pest through feeding on fresh leaves by larva and adults, and causes nicks and holes into leaves, leaving only a waxy surface layer. Insect cuticle is a complex exoskeleton that is not only involved in development but also protects the insect from environmental contaminations. Due to these key roles of the cuticle, cuticle-related genes are currently investigated in understanding the insect physiology in adaptation.
View Article and Find Full Text PDF