Intrauterine growth restriction (IUGR) is associated with increased risk of cardiometabolic disease later in life and has been shown to affect female and male offspring differently, but the mechanisms remain unclear. The purpose of this study was to identify proteomic differences and metabolic risk markers in IUGR male and female neonates when compared to appropriate for gestational age (AGA) babies that will provide a better understanding of IUGR pathogenesis and its associated risks. Our results revealed alterations in IUGR cord plasma proteomes with most of the differentially abundant proteins implicated in peroxisome pathways.
View Article and Find Full Text PDFObjective: To examine, following perinatal exposure to a diet high in advanced glycation end products (AGEs), whether the use of standard AGE-free mouse chow during the postweaning period alters metabolism and reproduction differently than exposure to a diet low in AGEs.
Design: Experimental animal study.
Setting: University-based research laboratory.
J Bioinform Comput Biol
August 2022
RNA-binding proteins (RBPs) have crucial roles in various cellular processes such as alternative splicing and gene regulation. Therefore, the analysis and identification of RBPs is an essential issue. However, although many computational methods have been developed for predicting RBPs, a few studies simultaneously consider local and global information from the perspective of the RNA sequence.
View Article and Find Full Text PDFMaternal nutrition and the intrauterine environment are important in determining susceptibility to reproductive and metabolic disturbances. Advanced glycation end products (AGEs) are widely consumed in Western diet. The purpose of this study was to determine whether perinatal exposure to a high levels of dietary AGEs affect metabolic and reproductive parameters in female mice offspring.
View Article and Find Full Text PDFObesity, known to cause a systemic elevation in monocyte chemotactic protein-1 (MCP-1), adversely affects normal ovarian function. The aim of this study was to determine whether MCP-1 plays a role in ovarian dysfunction that is related to obesity induced by high-fat (HF) diet intake. Wild type (WT) C57BL/6J mice were fed either normal chow (NC) (Group 1, control group) or HF diet (Group 2).
View Article and Find Full Text PDFAn adverse maternal in utero and lactation environment can program offspring for increased risk for metabolic disease. The aim of this study was to determine whether N-acetylcysteine (NAC), an anti-inflammatory antioxidant, attenuates programmed susceptibility to obesity and insulin resistance in offspring of mothers on a high-fat diet (HFD) during pregnancy. CD1 female mice were acutely fed a standard breeding chow or HFD.
View Article and Find Full Text PDFDespite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes.
View Article and Find Full Text PDFAltered fetal environments, such as a high-fat milieu, induce metabolic abnormalities in offspring. Different postnatal environments reveal the predisposition for adult diseases that occur during the fetal period. This study investigates the ability of a maternal high-fat diet (HFD) to program metabolic responses to HFD reexposure in offspring after consuming normal chow for 23 weeks after weaning.
View Article and Find Full Text PDFAlterations in insulin signaling as well as insulin action predispose to infertility as well as adverse pregnancy outcomes; however, little is known about the role of glucagon signaling in reproduction. The glucagon receptor knockout (Gcgr(-/-)) mouse created by our laboratory was used to define the role of glucagon signaling in maintaining normal reproduction. In this mouse model, lack of glucagon signaling did not alter the hypothalamic-pituitary-ovarian axis.
View Article and Find Full Text PDFObjective: To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency.
Research Design And Methods: We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr(-/-)) mice and wild-type (Gcgr(+/+)) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction.
Am J Physiol Endocrinol Metab
September 2009
In addition to its primary role in regulating glucose production from the liver, glucagon has many other actions, reflected by the wide tissue distribution of the glucagon receptor (Gcgr). To investigate the role of glucagon in the regulation of insulin secretion and whole body glucose homeostasis in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2007
Expression of GLUT4 in fast-twitch skeletal muscle fibers of GLUT4 null mice (G4-MO) normalized glucose uptake in muscle and restored peripheral insulin sensitivity. GLUT4 null mice exhibit altered carbohydrate and lipid metabolism in liver and skeletal muscle. To test the hypothesis that increased glucose utilization by G4-MO muscle would normalize the changes seen in the GLUT4 null liver, serum metabolites and hepatic metabolism were compared in control, GLUT4 null, and G4-MO mice.
View Article and Find Full Text PDF