Publications by authors named "Xiu Mei Mo"

In this study, a novel injectable hydrogel with biocompatibility and biodegradability through Schiff base reaction was prepared for soft tissue adhesive and hemostasis. Aldehyde hydroxyethyl starch (AHES) was prepared by oxidizing hydroxyethyl starch to get aldehyde groups. Amino carboxymethyl chitosan (ACC) was prepared by grafting ethylenediamine onto carboxymethyl chitosan to get more amino groups.

View Article and Find Full Text PDF

In the management of accelerating wound healing, moist environments play an important role. Compared with other scaffolds of various forms, hydrogels can maintain a moist environment in the wound area. They are cross-linked hydrophilic polymeric networks that resemble natural soft tissues and extracellular matrices.

View Article and Find Full Text PDF

In this paper, a novel biocompatible and biodegradable tissue adhesive composed of poly(ethylene glycol)-methacrylate (PEGDMA) and thiolated chitosan (CSS) was prepared. PEGDMA and CSS cross-linked rapidly under physiological conditions through the Michael addition reaction via UV lamp irradiation. The chemical structures of PEGDMA and CSS were confirmed via FTIR and H NMR.

View Article and Find Full Text PDF

Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2).

View Article and Find Full Text PDF

Hydrogels play a very important role in cartilage tissue engineering. Here, we oxidized dextran (Odex) and modified gelatin (Mgel) to fabricate a fast forming hydrogel without the addition of a chemical crosslinking agent. The dynamic gelling process was measured through rheological measurements.

View Article and Find Full Text PDF

Electrospinning is one of the most simple and effective methods to prepare polymer fibers with the diameters ranging from nanometer to several micrometers. Poly(L-lactide)-co-poly (ɛ-caprolactone) (P(LLA-CL)) fibers and P(LLA-CL)/heparin coaxial composite fibers herein were successfully prepared by single electrospinning and coaxial electrospinning, respectively. The prepared endothelialized P(LLA-CL) and P(LLA-CL)/heparin vascular grafts were used in the Beagle dogs experiment to evaluate the feasibility of thus made different scaffolds for substitution of dog femoral artery in early period, medium term, and long term, meanwhile the pure P(LLA-CL) vascular graft was used as the control group during all the experiments.

View Article and Find Full Text PDF

The native extracellular matrix (ECM) is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF) and hydroxybutyl chitosan (HBC) blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM) showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50.

View Article and Find Full Text PDF

Calcium phosphate is the most important inorganic constituent of biological tissues, and synthetic calcium phosphate has been widely used as biomaterials. In this study, a facile method has been developed for the fabrication of amorphous calcium phosphate (ACP)/polylactide-block-monomethoxy(polyethyleneglycol) hybrid nanoparticles and ACP porous nanospheres. Europium-doping is performed to enable photoluminescence (PL) function of ACP porous nanospheres.

View Article and Find Full Text PDF

Recent bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In this study, we incorporated nerve growth factor (NGF) into aligned core-shell nanofibres by coaxial electrospinning, and reeled the scaffold into aligned fibrous nerve guidance conduits (NGCs) for nerve regeneration study. This aligned PLGA/NGF NGC combined physical guidance cues and biomolecular signals to closely mimic the native extracellular matrix (ECM).

View Article and Find Full Text PDF

Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan.

View Article and Find Full Text PDF

Peripheral nerve regeneration remains a significant clinical challenge to researchers. Progress in the design of tissue engineering scaffolds provides an alternative approach for neural regeneration. In this study aligned silk fibroin (SF) blended poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) nanofibrous scaffolds were fabricated by electrospinning methods and then reeled into aligned nerve guidance conduits (NGC) to promote nerve regeneration.

View Article and Find Full Text PDF

The aim of this study is to investigate cross-linked gelatin-chitosan nanofibers produced by means of electrospinning. Gelatin and chitosan nanofibers were electrospun and then cross-linked by glutaraldehyde (GTA) vapor at room temperature. Scanning electron microscopy (SEM) images showed that the cross-linked mats could keep their nanofibrous structure after being soaked in deionized water at 37° C.

View Article and Find Full Text PDF

A coaxial electrospun technique to fabricate core-shell microfibers (MFs) for drug delivery application is described. In one-step, Paclitaxel (PTX)-loaded poly(L-lactic acid-co-epsilon-caprolactone) (75:25) (P(LLA-CL)(core/shell)) was electrospun into MFs using 2,2,2-trifluoroethanol as the solvent. The physical and chemical properties of electrospun fibers were characterized by various techniques, such as scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, and Fourier-transform infrared.

View Article and Find Full Text PDF