A novel and well-defined pH-sensitive amphiphilic triblock copolymer brush poly(lactide)-b-poly(methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) (PLA-b-PMAA-b-PPEGMA) and its self-assembled micelles were developed for oral administration of hydrophobic drugs. The copolymer and its precursors were synthesized by the combination of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and ring-opening polymerization (ROP) techniques. The molecular structures and characteristics were confirmed by GPC, (1)H NMR, and FT-IR.
View Article and Find Full Text PDFDeveloping microstructures, such as low molecular aggregates, spherical micelles and multi-compartment micelles, is an expanding area of research in Materials Science. By applying an atom transfer radical polymerization (ATRP) process to cross-linkable fluorinated diblock copolymers and analyzing the data we are able to demonstrate the potential for developing films with different micro-structures for additional biological research. Applying the Dissipative Particle Dynamic (DPD) Method, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) techniques to cross-linkable fluorinated diblock copolymers of (methyl methacrylate-co-hydroxyethyl methacrylate-co-butyl methacrylate)-b-2-(perfluoroalkyl)ethyl methacrylate (MMA-co-HEMA-co-BMA-b-FMA) we were able to analyze the structures and their relationships to the aggregation of various microstructure formations through the use of various solvents in the process.
View Article and Find Full Text PDF