How stoichiometry in different ecosystem components responds to long-term nitrogen (N) addition is crucial for understanding within-ecosystem biogeochemistry cycling processes in the context of global change. To explore the effects of long-term N addition on nutrient stoichiometry in soil and plant components in forest ecosystem, a 10-year N addition experiment using ammonium nitrate (NHNO) was conducted in a bamboo forest in the Rainy Zone of West China, where the background N deposition is the highest in the world. Four N treatment levels (+0, +50, +150, +300 kg N ha yr) (CK, LN, MN, HN) were applied monthly since November 2007, and then, the C:N:P stoichiometry of soil, microbial biomass, and enzymes in rhizosphere soil and bulk soil, and plant organs were measured.
View Article and Find Full Text PDFIn order to investigate the effects of N deposition on soil biochemistry in secondary forests, one N addition experiment was conducted in a secondary evergreen broad-leaved forest in the western edge of Sichuan Basin, with the highest level of background N deposition (about 95 kg N ha yr) in China. Three N treatment levels (+0, +50, +150 kg N ha yr) were monthly added to soil surface in this forest beginning in April 2013. Soil biochemistry and root biomass of the 0-10 cm soil horizon were measured from May 2014 to April 2015.
View Article and Find Full Text PDF