Publications by authors named "Xiqiong Ye"

Microorganisms are the driver of petroleum hydrocarbon degradation in soil micro-ecological systems. However, the distribution characteristics of microbial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content are not clear. In this study, polymerase chain reaction and high-throughput sequencing of soil microbial DNA were applied to investigate the compositions of microorganisms and alpha diversity in the oil-polluted soil, and the hydrocarbon removal also being analyzed using ultrasonic extraction and gravimetric method in a laboratory simulated ex-situ experiment.

View Article and Find Full Text PDF

This study assessed the benefits of biostimulation with nitrogen and phosphorous (BS) versus bioaugmentation with native petroleum degrading flora (BA) in terms of petroleum hydrocarbon removal and microbial community structure shift in petroleum-polluted loessal soil. After 12 weeks of remediation, the TPH degradation efficiencies were 28.3% and 13.

View Article and Find Full Text PDF

The shift in microbial community structure during the bioremediation of oil-polluted soil was analyzed by high-throughput sequencing. The results demonstrated obvious changes in the soil microbial community structure and diversity during bioremediation. The species richness and evenness of the microbial community decreased substantially due to the bioaugmentation treatment.

View Article and Find Full Text PDF

Bioaugmented compost was created by inoculating petroleum-degrading bacteria into mature compost. The petroleum hydrocarbon degradation efficiencies were investigated by applying this enhanced compost to petroleum-contaminated soil under low temperatures. The results showed that the degrading bacteria can be enriched in the mature compost.

View Article and Find Full Text PDF

A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.

View Article and Find Full Text PDF

A laboratory study was conducted to investigate the impacts of bioremediation on microbial communities and various nitrogen shifts in petroleum contaminated soil by using GC-MS and Illumia MiSeq technique. Results showed the concentrations of alkane reduced from 25987.8 mg·kg to 12788.

View Article and Find Full Text PDF

Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS).

View Article and Find Full Text PDF