Publications by authors named "Xiqing Ma"

In order to address the shortcomings of the traditional bidirectional RRT* algorithm, such as its high degree of randomness, low search efficiency, and the many inflection points in the planned path, we institute improvements in the following directions. Firstly, to address the problem of the high degree of randomness in the process of random tree expansion, the expansion direction of the random tree growing at the starting point is constrained by the improved artificial potential field method; thus, the random tree grows towards the target point. Secondly, the random tree sampling point grown at the target point is biased to the random number sampling point grown at the starting point.

View Article and Find Full Text PDF

Alfalfa ( L.), a kind of high-quality perennial legume forage, is widely distributed in the northern regions of China. In recent years, low temperatures have frequently occurred and limited alfalfa productivity and survival in early spring and late fall.

View Article and Find Full Text PDF

The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars ( L.

View Article and Find Full Text PDF

Background: Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds.

View Article and Find Full Text PDF

Deterioration during seed storage generally causes seed vigour declining. However, the mechanism of deterioration occurred still not clear. Seeds and embryos of oat (Avena sativa L.

View Article and Find Full Text PDF

Background And Aims: Rhizomes are key organs for the establishment of perennial grass stands and adaptation to environmental stress. However, mechanisms regulating rhizome initiation and elongation under drought stress and during post-drought recovery remain unclear. The objective of this study is to investigate molecular factors and metabolic processes involved in drought effects and post-drought recovery in rhizome growth in perennial grass species by comparative transcriptomic and proteomic profiling.

View Article and Find Full Text PDF

Cyclophilins (CYPs), a class of proteins with a conserved peptidyl-prolyl cis-trans isomerase domain, are widely involved in the regulation of plant growth and development, as well as in the response to abiotic stresses including cold. In our previous study, we identified an Arabidopsis gain-of-function mutant ROC1 with enhanced cold-tolerance and enhanced expression of jasmonic acid (JA) and oxidative stress responsive genes. Here, we show the underlying molecular mechanisms for the improved cold tolerance observed in the ROC1 mutant.

View Article and Find Full Text PDF

Cyclophilins (CYPs) belonging to the immunophilin family are present in all organisms and widely distributed in various cells associated with the activity of peptidyl-prolyl cis/trans isomerase. Plant CYPs are members of a multi-gene family and are involved in a series of biological processes. However, little is known about their structure, evolution, developmental expression and functional analysis in Medicago truncatula.

View Article and Find Full Text PDF

Mitochondria are the source of reactive oxygen species (ROS) in plant cells and play a central role in the mitochondrial electron transport chain (ETC) and tricarboxylic acid cycle (TCA) cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds ( L.) exposed to exogenous nitric oxide (NO) treatment.

View Article and Find Full Text PDF

Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; 'BR') and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; 'Baron') were treated with 10 μM GA3 in hydroponic culture in growth chambers.

View Article and Find Full Text PDF

Background And Aims: Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis.

View Article and Find Full Text PDF

Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial grass species. A PPH gene, LpPPH, was cloned from perennial ryegrass (Lolium perenne L.

View Article and Find Full Text PDF

In the absence of pathogen infection, plant effector-triggered immune (ETI) receptors are maintained in a preactivation state by intermolecular interactions with other host proteins. Pathogen effector-induced alterations activate the receptor. In Arabidopsis, the ETI receptor RPM1 is activated via bacterial effector AvrB-induced phosphorylation of the RPM1-interacting protein RIN4 at Threonine 166.

View Article and Find Full Text PDF

Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture.

View Article and Find Full Text PDF

The genetic basis of heterosis for grain yield and its components was investigated at the single- and two-locus levels using molecular markers with an immortalized F(2) (IF(2)) population, which was developed by pair crosses among recombinant inbred lines (RILs) derived from the elite maize hybrid Yuyu22. Mid-parent heterosis of each cross in the IF(2) population was used to map heterotic quantitative trait loci. A total of 13 heterotic loci (HL) were detected.

View Article and Find Full Text PDF

The QTL mapping results were compared with the genotypically selected and random samples of the same size on the base of a RIL population. The results demonstrated that there were no obvious differences in the trait distribution and marker segregation distortion between the genotypically selected and random samples with the same population size. However, a significant increase in QTL detection power, sensitivity, specificity, and QTL resolution in the genotypically selected samples were observed.

View Article and Find Full Text PDF