Understanding the biosynthesis of cofactors is fundamental to the life sciences, yet to date a few important pathways remain unresolved. One example is the redox cofactor pyrroloquinoline quinone (PQQ), which is critical for C1 metabolism in many microorganisms, a disproportionate number of which are opportunistic human pathogens. While the initial and final steps of PQQ biosynthesis, involving PqqD/E and PqqC, have been elucidated, the precise nature and order of the remaining transformations in the pathway are unknown.
View Article and Find Full Text PDFPqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn, Mg, Cu, and Zn.
View Article and Find Full Text PDFAttempts at eliciting neutralizing antibodies against human immunodeficiency virus (HIV)-1 have generally failed. Computationally designed epitope-scaffold platforms allow transplantation of structural epitopes to scaffold proteins. Human rhinovirus (HRV) allows such engrafting of HIV-1 epitopes on the surface scaffold proteins.
View Article and Find Full Text PDFThe C1q-tumor necrosis factor 5 (C1QTNF5) protein plays a significant role in retinal pigmented epithelium (RPE) cellular adhesion. The C1QTNF5 gene is co-transcribed with the frizzled-related protein (MFRP) gene. A Ser-to-Arg mutation at site 163 (S163R) in C1QTNF5 is known to cause late-onset retinal macular degeneration (L-ORMD).
View Article and Find Full Text PDFAutosomal dominant late-onset retinal macular degeneration (L-ORMD) is caused by a single S163R mutation in the C1q and tumor necrosis factor-related protein 5 (C1QTNF5) gene. The C1QTNF5 gene encodes a secreted and membrane-associated protein involved in adhesion of retinal pigmented epithelial cells (RPE) to Bruch's membrane. The crystal structure of the trimeric globular domain of human C1QTNF5 at 1.
View Article and Find Full Text PDFPolymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA).
View Article and Find Full Text PDFK65R is a primary reverse transcriptase (RT) mutation selected in human immunodeficiency virus type 1-infected patients taking antiretroviral regimens containing tenofovir disoproxil fumarate or other nucleoside analog RT drugs. We determined the crystal structures of K65R mutant RT cross-linked to double-stranded DNA and in complexes with tenofovir diphosphate (TFV-DP) or dATP. The crystals permit substitution of TFV-DP with dATP at the dNTP-binding site.
View Article and Find Full Text PDFBy using single wavelength anomalous diffraction phasing based on the anomalous signal from copper atoms, the crystal structure of atratoxin was determined at the resolution of 1.5 A and was refined to an ultrahigh resolution of 0.87 A.
View Article and Find Full Text PDFCysteine-rich secretory proteins (CRISPs) are widely distributed in mammals and snake venoms. They possess apparent homology but varying functions. The structure of CRISPs has remained elusive.
View Article and Find Full Text PDFAtratoxin-b, a short-chain alpha-neurotoxin purified from Naja atra (mainland Chinese cobra) venom using a three-step chromatography procedure, has an apparent molecular mass of 6950 Da with an alkaline pI value (>9.5) and consists of one single polypeptide chain as estimated by MALDI-TOF mass spectrometry and SDS-PAGE. The protein is toxic to mice, with an in vitro LD(50) of about 0.
View Article and Find Full Text PDFAtratoxin, a new alpha-neurotoxin purified to homogeneity by a series of liquid chromatographies from the venom of Naja naja atra (mainland Chinese cobra), is a small single-polypeptide alkaline protein with a pI of about 9.5 and molecular weight of 6952 Da estimated by mass spectrometry. Although the sequencing of the N-terminal 15 residues (LECHNQQTTQQPEGG) shows that this neurotoxic protein contains most of the residues, especially at the conserved positions, of the consensus sequence of short-chain alpha-neurotoxins, the natural mutations in the N-terminal Loop-1 presented by the sequence alignment may have structural or functional implications for the interactions between alpha-neurotoxins and related receptors.
View Article and Find Full Text PDF