With the development of industry and global warming, passive radiative cooling textiles have recently drawn great interest owing to saving energy consumption and preventing heat-related illnesses. Nevertheless, existing cooling textiles often lack efficient sweat management capacity and wearable comfort under many practical conditions. Herein, a hierarchical cooling metafabric that integrates passive radiation, thermal conduction, sweat evaporation, and excellent wearable comfort is reported through an electrospinning strategy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
In order to address the requirements for warmth and energy conservation in cold climates, the development of personal thermal management textiles that regulate local human thermal comfort has emerged as a promising solution in recent times. Nevertheless, existing warming textile strategies often rely on a singular energy source, exhibit inadequate air/moisture permeability, and lack adaptability to dynamic and intricate climate variations. Herein, a novel multienergy-coupled radiative warming Janus textile has been effectively designed and fabricated via screen printing and foam finishing.
View Article and Find Full Text PDF