Publications by authors named "Xiongfeng Ma"

We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.

View Article and Find Full Text PDF
Article Synopsis
  • Cotton struggles with growth in low temperatures, especially during seedling stages, due to limited research on how it adapts to cold stress.
  • A study tracked the expression of 5140 genes during cold stress in seed germination, identifying three key responsive gene modules and pinpointing 98 important genes linked to cold tolerance.
  • The gene GhSPX9 was highlighted as critical for cold resistance; silencing this gene made cotton seedlings more sensitive to cold, providing insights for future research on enhancing cold tolerance in cotton.
View Article and Find Full Text PDF
Article Synopsis
  • Leaf shape is important for cotton yield and plant structure, with sub-okra leaves showing potential advantages over normal leaves by enhancing canopy structure and yield.
  • A field experiment revealed that sub-okra leaves are thinner and have lower chlorophyll content but achieve higher photosynthetic rates, leading to increased yields despite having less biomass than normal leaves.
  • The study suggests that using the sub-okra leaf trait could be beneficial for developing short-season cotton varieties with improved photosynthetic efficiency and higher yields.
View Article and Find Full Text PDF

Adenosine kinase (ADK) is a key enzyme widely distributed in plants, playing an important role in maintaining cellular energy homeostasis and regulating plant growth, development, and responses to environmental stresses. However, research on genes in cotton (), an economically significant crop, has been limited. This study identified 92 genes from four cotton species (, , , and ) using HMMER and Local BLASTP methods and classified them into six groups.

View Article and Find Full Text PDF

Microplastics (MPs) have emerged as a significant global environmental concern, particularly within agricultural soil systems. The extensive use of plastic film mulching in cotton cultivation has led to the alarming presence of MP pollution in cotton fields. However, the uptake and effects of MPs on the growth of cotton plants are poorly understood.

View Article and Find Full Text PDF

Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement without leaking any further information. As an efficient variant of ZKP, noninteractive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir heuristic is essential to a wide spectrum of applications, such as federated learning, blockchain, and social networks. However, the heuristic is typically built upon the random oracle model that makes ideal assumptions about hash functions, which does not hold in reality and thus undermines the security of the protocol.

View Article and Find Full Text PDF

Complementarity is an essential feature of quantum mechanics. The preparation of an eigenstate of one observable implies complete randomness in its complementary observable. In quantum cryptography, complementarity allows us to formulate security analyses in terms of phase-error correction.

View Article and Find Full Text PDF

Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (NF) self-supporting CoFe-layered double hydroxide (CoFe-LDH/NF) was directly converted into FeCoO-FeCoS heterostructure via hydrothermal method in 50 mM NaS solution, instead of FeCoO@FeCoS core-shell structure. The FeCoO-FeCoS heterojunction shows nanosheets structure with rough surface (the thickness of ∼ 198.

View Article and Find Full Text PDF

Ultracold atoms in optical lattices form a competitive candidate for quantum computation owing to the excellent coherence properties, the highly parallel operations over spins, and the ultralow entropy achieved in qubit arrays. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale up and detect multipartite entanglement, the basic resource for quantum computation, due to the lack of manipulations over local atomic spins in retroreflected bichromatic superlattices.

View Article and Find Full Text PDF

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance.

View Article and Find Full Text PDF

Protein ubiquitination is essential for plant growth and responses to the environment. The SEVEN IN ABSENTIA (SINA) ubiquitin ligases have been extensively studied in plants, but information on their roles in fiber development is limited. Here, we identified GhSINA1 in Upland cotton (Gossypium hirsutum), which has a conserved RING finger domain and SINA domain.

View Article and Find Full Text PDF

Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses.

View Article and Find Full Text PDF

Copper(II) (Cu) is essential for plant growth and development. However, high concentrations are extremely toxic to plants. We investigated the tolerance mechanism of cotton under Cu stress in a hybrid cotton variety (Zhongmian 63) and two parent lines with different Cu concentrations (0, 0.

View Article and Find Full Text PDF

In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the bottlenecks lies in the exponential decay of the key rate with respect to the transmission distance. Recently proposed schemes mainly focus on achieving longer distances by creating a long-arm single-photon interferometer over two communication parties.

View Article and Find Full Text PDF

Multipartite entanglement plays an essential role in both quantum information science and many-body physics. Because of the exponentially large dimension and complex geometric structure of the state space, the detection of entanglement in many-body systems is extremely challenging in reality. Conventional means, like entanglement witness and entropy criterion, either highly depend on the prior knowledge of the studied systems or the detection capability is relatively weak.

View Article and Find Full Text PDF

Entanglement detection is essential in quantum information science and quantum many-body physics. It has been proved that entanglement exists almost surely for a random quantum state, while the realizations of effective entanglement criteria usually consume exponentially many resources with regard to system size or qubit number, and efficient criteria often perform poorly without prior knowledge. This fact implies a fundamental limitation might exist in the detectability of entanglement.

View Article and Find Full Text PDF

Flowering time (FTi) is a major factor determining how quickly cotton plants reach maturity. Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern China. Yet, few quantitative trait loci (QTLs) or genes regulating early maturity have been reported in cotton, and the underlying regulatory mechanisms are largely unknown.

View Article and Find Full Text PDF

Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm).

View Article and Find Full Text PDF

Quantum key distribution - the establishment of information-theoretically secure keys based on quantum physics - is mainly limited by its practical performance, which is characterised by the dependence of the key rate on the channel transmittance R(η). Recently, schemes based on single-photon interference have been proposed to improve the key rate to [Formula: see text] by overcoming the point-to-point secret key capacity bound with interferometers. Unfortunately, all of these schemes require challenging global phase locking to realise a stable long-arm single-photon interferometer with a precision of approximately 100 nm over fibres that are hundreds of kilometres long.

View Article and Find Full Text PDF

(upland cotton) is one of the most economically important crops worldwide, which has experienced the long terms of evolution and domestication process from wild species to cultivated accessions. However, nucleotide evolution, domestication selection, and the genetic relationship of cotton species remain largely to be studied. In this study, we used chloroplast genome sequences to determine the evolutionary rate, domestication selection, and genetic relationships of 72 cotton genotypes (36 cultivated cotton accessions, seven semi-wild races of .

View Article and Find Full Text PDF

Histone demethylases containing JumonjiC () domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 family genes were identified from 21 different plant species. The evolutionary analysis results showed that the gene was detected in each species, that is, the gene has already appeared in algae.

View Article and Find Full Text PDF

Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error-correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state and state decoding. To address this challenge, we experimentally realise the [5, 1, 3] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors.

View Article and Find Full Text PDF

Cucumber (Cucumis sativus L.) is a model for the study of sex differentiation in the last two decades. In cucumber, sex differentiation is mainly controlled by genetic material, but plant growth regulators can also influence or even change it.

View Article and Find Full Text PDF

Ubiquitination is a post-translational regulatory mechanism that controls a variety of biological processes in plants. The E3 ligases confer specificity by recognizing target proteins for ubiquitination. Here, we identified SEVEN IN ABSENTIA (SINA) ubiquitin ligases, which belong to the RING-type E3 ligase family, in upland cotton ().

View Article and Find Full Text PDF