Publications by authors named "Xiongfang An"

Microbial fuel cells (MFCs) have the dual advantage of mitigating Cr(Ⅵ) wastewater ecological threats while generating electricity. However, the low electron transfer efficiency and the limited enrichment of active electrogens are barriers to MFCs advancement. This study describes the synthesis of the TP-PDA-RGO@CC negative electrode using tea polyphenol as a reducing agent and polydopamine-doped graphene, significantly enhances the roughness and hydrophilicity of the anode.

View Article and Find Full Text PDF

The microbial fuel cell (MFCs) has dual functions, capable of achieving dye decolorization and synchronous power generation. Despite these advantages, the MFCs have faced challenges related to low electron transfer efficiencies and limited dye treatment capacity in wastewater applications. This work introduces an innovative approach by employing reduced graphene oxide-modified carbon cloth (TP-RGO@CC) anodes, utilizing tea polyphenols as the reducing agent.

View Article and Find Full Text PDF

Metal oxides-modified biochars have been widely studied as promising adsorbents for removing phosphate from wastewater discharge. Yet, the low adsorption selectivity towards phosphate severely limits its potential in practical applications. In this study, MgO-modified biochar modified by hydroxyl and amino groups (OH/NH@MBC) is developed for selective phosphorus recovery from wastewater.

View Article and Find Full Text PDF

Significant progress has been made in the development of phosphorus recovery adsorbents and photocatalysts for degradation of pesticides. However, the bifunctional materials for phosphorus recovery and photocatalytic degradation of pesticides have not been designed, and the mechanism of the interaction between photocatalysis and P adsorption remains unexplored. Herein, we develop biochar-g-CN-MgO composites (BC-g-CN-MgO) with bi-function application to minimize water toxicity and eutrophication.

View Article and Find Full Text PDF

Technologies that can effectively address the environmental issues arisen from the use of agrochemicals and P fertilizers are needed for the development of green agriculture. Here, we reporta new core-shell P-laden biochar/ZnO/g-CN composite (Pbi-ZnO-g-CN) used both as an efficient photocatalyst for degrading atrazine and a promising slow-release fertilizer for improving the P utilization efficiency. In comparison with P-laden biochar/ZnO (Pbi-ZnO), Pbi-ZnO-g-CN exhibits enhanced photocatalytic activity with the maximum atrazine degradation efficiency of 85.

View Article and Find Full Text PDF

The development of slow-release phosphorus fertilizers (SRFs) with high water retention is of significance for modern agriculture. Herein, a new class of biochar-based SRFs are developed by an integrated co-pyrolysis and co-polymerization process (PSRFs). The water-retention performance and P slow-release behavior of PSRFs are evaluated, which are compared with other types of biochar-based SRFs derived from biochar-based phosphorus adsorption (MSRFs), co-pyrolysis of biomass-bentonite-nutrients (BSRFs), and the application of coating on BSRFs (CSRFs).

View Article and Find Full Text PDF

The stability of biochar is a crucial parameter in determining the potential of biochar for carbon sequestration. Many studies have demonstrated that the addition of clay during the pyrolysis of biomass is beneficial for the production of biochar with a high stability, but finding a strategy for a further improvement of stability of clay-modified biochar is still highly desirable. Herein, the co-pyrolysis of biomass and clay mediated by trace metal elements is proposed as a new strategy for the production of biochar with exceptionally high stability.

View Article and Find Full Text PDF

Biochar has been extensively studied as a promising carrier material for fertilizers and an ideal adsorbent for the removal of pesticides. Yet, the application of biochar for simultaneously eliminating the pollution from the agricultural use of fertilizers and pesticides remains unexplored. Herein, we develop P-loaded biochar-based fertilizers (PBC) by the co-pyrolysis of cotton straw and HPO.

View Article and Find Full Text PDF

This studyinvestigated the behavior and kinetics of co-pyrolysis of apple wood (AW)with HPOand KPOas catalysts under microwaveto prepare biochar as microbialabsorbent. The kinetic studies indicate that the co-pyrolysis of AW withHPOorKPOcan effectively improve the pyrolysis efficiencyand enhance the biocharcharacteristicsby reducing ofthe activation energy of the pyrolysis reaction. The kinetic parameters indicate that the activation energy of the mixturesin the main pyrolysis stage is lower than that of a single AW, whichmeanthat the co-pyrolysis of AW withHPOorKPOshows excellent synergy.

View Article and Find Full Text PDF