Publications by authors named "Xiongbin Wang"

It is necessary to improve the action cross section (η × σ) of high-order multiphoton absorption (MPA) for fundamental research and practical applications. Herein, the core-shell FAPbBr/CsPbBr nanocrystals (NCs) were constructed, and fluorescence induced by up to five-photon absorption was observed. The value of η × σ reaches 8.

View Article and Find Full Text PDF

Two-dimensional colloidal CdSe nanoplatelets (NPLs) have been considered as ideal emitting materials for high performance light-emitting devices due to their excellent optical properties. However, the understanding of defect related radiative and nonradiative recombination centers in CdSe NPLs is still far from sufficient, especially their physical distribution locations. In this work, CdSe core and CdSe/CdS core/crown NPLs have been successfully synthesized and their optical properties have been characterized by laser spectroscopies.

View Article and Find Full Text PDF

Transition metal oxides (TMOs) consist of a series of solid materials, exhibiting a wide variety of structures with tunability and versatile physicochemical properties. Such a statement is undeniably true for chiral TMOs since the introduction of chirality brings in not only active optical activities but also geometrical anisotropy due to the symmetry-breaking effect. Although progressive investigations have been made for accurately controlled synthesis and relevant explanations on the chirality origin of such materials, the overall field of chiral TMOs is still in its infancy with adequate space for interdisciplinary communications and development.

View Article and Find Full Text PDF

The task of electronic medical record named entity recognition (NER) refers to automatically identify all kinds of named entities in the medical record text. Chinese clinical NER remains a major challenge. One of the main reasons is that Chinese word segmentation will lead to the wrong downstream works.

View Article and Find Full Text PDF

As opposed to traditional photoluminescence and ultra-violet based optical sensing, we present here a sensing system based on resolved optically active polarization with promising applications. It is based on the ultrathin CdSe nanoplatelets (NPLs) when modified with either l or d-cysteine molecules (l/d-cys) as bio-to-nano ligands. The chiral ligand transfers its chiroptical activity to the achiral nanoplatelets with an anisotropy factor of ∼10-4, which unlocks the chiral excitonic transitions and allows lead ion detection with a limit of detection (LOD) as low as 4.

View Article and Find Full Text PDF

Nanocrystal quantum dots (QDs) have great potential for optoelectronic applications such as light emitting diodes and lasers due to their superior optical properties. The core-shell CdSe/CdS QDs can suppress Auger recombination effectively and enhance the emission efficiency. However, it will lead to poor photostability due to the small conduction band offset between CdSe core and CdS shell.

View Article and Find Full Text PDF

QDs-doped polymer microfibers are fabricated through direct drawing method. By adding the polymethylmethacrylate into polystyrene, the surface quality and flexibility of microfiber are improved. Under direct excitation by the focused laser, the polymer microfibers doped with different quantum dots emit different colors and act as an optical waveguide.

View Article and Find Full Text PDF