Thermally insulating aerogels can now be prepared from ceramics, polymers, carbon, and metals and composites between them. However, it is still a great challenge to make aerogels with high strength and excellent deformability. We propose a design concept of hard cores and flexible chains that alternately construct the aerogel skeleton structure.
View Article and Find Full Text PDFIn order to fundamentally suppress the shuttle effect, N Plasma & AlO magnetron sputtered separators (AlO@N-PP) are proposed for lithium-sulfur batteries (LSBs). Such a dual-functional polysulfides (LiPSs) barrier separator greatly inhibits the shuttle effect from the perspective of physical and chemical interaction. Physically, the inherently electronegative amorphous AlO first achieves the repulsion of LiPSs to the sulfur cathode through the electrostatic repulsive effect, effectively preventing a large amount of soluble LiPSs from accumulating at the separator.
View Article and Find Full Text PDFIn this study, we used lead zirconate titanate (PZT) aerogels prepared by a solvothermal assisted sol-gel method as raw materials to synthesize PZT aerogel/PVDF composite coatings and PZT aerogel sintered sheets through natural annealing and PVDF composite and hot pressing, respectively, and then combined them with the design principle of a biomimetic shell structure to prepare an alternate coating/sheet structured PZT aerogel piezoelectric composite with natural distinguished mechanical properties. It had excellent piezoelectric properties with a piezoelectric coefficient of 435.15 pC N and of -144.
View Article and Find Full Text PDFThree-dimensional (3D) surface enhanced Raman scattering (SERS) substrates were produced by magnetic force assisting self-assembled nanoparticles in arrayed holes. Compared to '2D' plasmonic structures used in conventional SERS substrates, the 'hot spots' existed on whole depth of the 3D SERS substrates, which greatly enhanced the sensitivity. The prepared 3D SERS substrate was able to detect 4-aminothiophenol with a concentration down to 1 pM.
View Article and Find Full Text PDFWe present a p-n-p monolayer graphene photodetector doped with titanium dioxide nanotubes for detecting light from visible to near-infrared (405 to 1310 nm) region. The built-in electric field separates the photo-induced electrons and holes to generate photocurrent without bias voltage, which allows the device to have meager power consumption. Moreover, the detector is very sensitive to the illumination area, and we analyze the reason using the energy band theory.
View Article and Find Full Text PDFA flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode.
View Article and Find Full Text PDFDue to the insulator-metal transition (IMT) performance covering the full terahertz (THz) band, VO2 films were extensively investigated as an excellent candidate for modulating, switching, and memory devices. However, some remarkable absorption peaks owing to the infrared-active phonon modes suppressed the films' modulation ability and restricted the films' application in high THz frequency. Here we prepared Al-doped VO2 films on (111) directional silicon substrate, which rapidly counteracted the absorption peak and exhibited widely modulating properties.
View Article and Find Full Text PDFUnlabelled: Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.
View Article and Find Full Text PDF