Recent progress has been made in the reductive debromination of polybrominated diphenyl ethers (PBDEs) by nanoscale zero-valent iron (nZVI). To better understand the mechanism of this reaction, seven selected BDE congeners and their anions were investigated at the density functional theory (DFT) level using four different methods, including B3LYP/6-31G(d), B3LYP/6-31+G(d), B3LYP/6-31G(d,p) and B3LYP/6-311G(d,p). The cleaved C-Br bonds observed in the equilibrium structures of anionic PBDEs were adopted as the probe of the susceptible debromination position of PBDEs in the presence of nZVI, and the proposed major reaction pathways based on our calculations can satisfactorily conform to the reported experimental results.
View Article and Find Full Text PDFThe objective of this study was to evaluate the antitumor activity of chelerythrine chloride (CHE) and investigate its potential apoptotic induction mechanism in SMMC-7721 cells. Our results suggested that the proliferation of SMMC-7721 cells was inhibited by CHE in a time and dose dependent manner, with a significant accumulation in S phase, and the cells exhibited typical apoptotic features. Moreover, CHE remarkably induced apoptosis by disruption of the mitochondrial membrane potential, release of Cyt-c, activation of caspase-3, and cleavage of poly-ADP-ribose polymerase in a dose dependent manner.
View Article and Find Full Text PDF