Targeted drug delivery to the glioblastoma (GBM) overcoming blood-brain barrier (BBB) has been challenging. Exosomes are promising vehicles for brain tumor drug delivery, but the production and purification hinder its application for nanomedicine. Besides, the formation of protein corona (PC) may affect the behaviour of nanocarriers.
View Article and Find Full Text PDFExosomes are lipid bilayer membrane vesicles and are emerging as competent nanocarriers for drug delivery. The clinical translation of exosomes faces many challenges such as massive production, standard isolation, drug loading, stability and quality control. In recent years, artificial exosomes are emerging based on nanobiotechnology to overcome the limitations of natural exosomes.
View Article and Find Full Text PDFExosomes (Exos) are promising vehicles for brain drug delivery due to nanosize and the ability to breach the blood-brain barrier (BBB). But the low yield of natural exosomes limits its application for nanomedicine. The generation of bioinspired nanovesicles (BNVs) that mimicking Exos is attractive, but there is a lack of comparative evaluation of Exos and BNVs.
View Article and Find Full Text PDFDense extracellular matrix (ECM) in the tumor stroma has been a challenge for drug penetration and cytotoxic T lymphocyte (CTL) infiltration. Neutrophil elastase (NE), in surface-bound form, can destruct ECM rapidly, may be used for remodeling tumor ECM, and overcoming tumor stromal barrier. Focusing on elastosis in triple-negative breast tumor, biomimetic liposomes with chimeric cell membrane proteins (LMP) are developed and for the first time, it is demonstrated that LMP with surface-bound elastase (NE-LMP) can target and degrade ECM effectively in tumor stroma, with minimal toxicity to normal tissues.
View Article and Find Full Text PDFBackground: Small extracellular vesicles (sEVs) are nanosized vesicles involved in cell-to-cell communication. sEVs have been widely studied for clinical applications such as early detection of diseases and as therapeutics. Various methods for sEVs isolation are been using, but different methods may result in different qualities of sEVs and impact downstream analysis and applications.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are nanovesicles involved in multiple biological functions. Small EVs (sEVs) are emerging as therapeutics and drug delivery systems for their contents, natural carrier properties, and nanoscale size. Despite various clinical application potentials, little is known about the effects of storage conditions on sEVs for functional analysis and therapeutic use.
View Article and Find Full Text PDFJ Control Release
December 2020
Extracellular vesicles (EVs) are cell-derived lipid bilayer-enclosed nanovesicles. EVs are emerging as keys for identifying molecular mechanisms by mediating intercellular communication. EVs allow the exchange of various components with neighboring and distant cells through the extracellular environment, thereby involving in various biological processes in both physiological and pathological conditions such as wound healing, immune response, and tumorigenesis.
View Article and Find Full Text PDFFor therapy of skin cancer, transdermal administration has been a potential way to enhance chemotherapy. However, the drug delivery efficacy remained unsatisfactory because of the physiological barriers from the skin to the tumor, which hindered the effect of 3,5,4'-trimethoxy-trans-stilbene (BTM), a drug that has toxicity to cancer. Herein, we prepared an oil-in-water (O/W) microemulsion to load BTM (BTM-ME) for transdermal therapy of melanoma.
View Article and Find Full Text PDFBackground: The protective role of puerarin (PUE) against myocardial infarction is closely related to its regulation on mitochondria. However, free PUE can hardly reach the mitochondria of ischemic cardiomyocytes due to the lack of mitochondrial targeting of PUE. Here PUE was loaded into mitochondria-targeted micelles (PUE@TPP/PEG-PE) for precisely delivering PUE into mitochondria with the aim of enhancing the anti-apoptosis effect.
View Article and Find Full Text PDFPancreatic cancer remains one of the most highly lethal diseases with very poor prognosis. Gemcitabine (GEM) is the first-line chemotherapeutic drug for pancreatic cancer treatment but is associated with significant side effects when administered systemically. Exosomes have emerged as attractive candidates for drug delivery for their high delivery efficiency and biocompatibility.
View Article and Find Full Text PDFInt J Nanomedicine
November 2019
Background: 3,5,4'-trimethoxy-trans-stilbene (BTM) is a methylated derivative of resveratrol. To improve the pharmaceutical properties of BTM, BTM loaded PEG-PE micelles (BTM@PEG-PE) were fabricated and its anti-cancer efficacy against colon cancer was evaluated.
Methods: BTM@PEG-PE micelles were prepared by the solvent evaporation method and were characterized by nuclear magnetic resonance (NMR), size, zeta potential, polymer disperse index (PDI) and transmission electron microscopy (TEM).
PUE@PEG-PLGA micelles has excellent characteristics such as small particle size, high drug loading and slow drug release. The results of TEM electron microscopy showed that PUE@PEG-PLGA micelles had obvious core-shell structure. The critical micelle concentration(CMC) of PEG-PLGA micelles determined by pyrene assay was about 4.
View Article and Find Full Text PDFThe aim of this research was to develop a phospholipid complex based nanoemulsion system for oral insulin delivery. Insulin-phospholipid complex (IPC) was firstly prepared by an anhydrous co-solvent lyophilization method, and then encapsulated into the oil phase of nanoemulsion to obtain the IPC-based nanoemulsion (IPC-NE). Both water-in-oil (W/O) IPC-NE and oil-in-water (O/W) IPC-NE were formulated and evaluated for comparison.
View Article and Find Full Text PDFBackground: 8-methoxypsoralen (8-MOP) is one of the most commonly utilized drugs in psoralen-ultraviolet A therapy for treatment of vitiligo. However, poor skin retention and systemic side effects limit the clinical application of 8-MOP.
Methods: Microemulsions (MEs) and chitosan derivative-coated 8-MOP MEs were developed and compared for dermal delivery of 8-MOP.
Extracellular vesicles (EVs) are nanoscale natural membrane vesicles released by cells and are involved in intercellular communication. A number of studies have used autologous cancer cell-derived EVs (ACCD-EVs) as nanocarriers for delivery of therapeutics as they may be more efficiently uptaken by the cancer cells themselves. However, they also have been suggested to promote proliferation, survival and metastasis of cancers.
View Article and Find Full Text PDFThe aim of this study was to develop a microemulsion-based hydrogel (MBH) formulation of 3,5,4'-trimethoxy-trans-stilbene (BTM) as topical delivery system for the treatment of osteoarthritis (OA). The pseudo-ternary phase diagrams were constructed to optimize the microemulsion (ME) formulation. The ME formulation containing 18.
View Article and Find Full Text PDFPuerarin (PUE) and tetramethylpyrazine (TMP) are central nervous system (CNS) drugs used in cerebrovascular diseases. Poor brain-blood barrier (BBB) permeability limited their clinical application. Borneol and α-asarone have been proposed as an oral brain-targeting enhancer.
View Article and Find Full Text PDFPuerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy.
View Article and Find Full Text PDFBerberine hydrochloride (BBH) has a variety of pharmacological activities such as antitumor, antimicrobial, anti-inflammation, and reduce irritable bowel syndrome. However, poor stability and low oral bioavailability limited its usage. Herein, an oil-in-water nanoemulsion system of BBH was developed to improve its stability and oral bioavailability.
View Article and Find Full Text PDFThe purpose of the present work was to determine the mechanisms by which microemulsions (MEs) enhance the oral bioavailability of puerarin. The in situ perfusion method was used in rats to study the absorption mechanisms of an oil-in-water (O/W) microemulsion (O/W-ME) and a water-in-oil (W/O) microemulsion (W/O-ME). The possibility of lymphatic transport of the MEs was investigated using a chylomicron flow blocking approach.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
June 2013
Objective: To observe the protective effect of Yixinshu capsule on myocardial ischemia reperfusion injury (MIRI) in SD rats.
Method: Sixty healthy SD rats were randomized into six groups: sham group, MIRI model group, Xinsuning capsule group, low, middle or high dose Yixinshu capsule. Acute MIRI rat models were created by reperfusion for 120 min after anterior interventricular branch of the left coronary artery for 30 min.
Zhongguo Zhong Yao Za Zhi
November 2012
Objective: To detect the stability of PEGylated puerarin (PEG-PUE), in order to provide experimental basis for storage conditions of PEGylated puerarin.
Method: First, a method for determining the content of PEG-PUE was established. Next, a system study was conducted for the stability of PEG-PUE affected by different factors such as temperature, humidity, light and light avoidance.