Publications by authors named "Xiong Yuzan"

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO) and silicon nitride (SiN). Here, a seeded growth technique for crystallizing CrTe films on amorphous SiN/Si and SiO/Si substrates with a low thermal budget is presented.

View Article and Find Full Text PDF

This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The ZnYfilter demonstrated magnetic field tunability in the 8-12 GHz frequency range by applying an in-plane bias magnetic field H provided by a built-in permanent magnet.

View Article and Find Full Text PDF

We explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé factor () is anisotropic: decreases while increases with increasing temperature . Moreover, the anisotropy of the factor (Δ) and the anisotropy of saturation magnetization (Δ) are correlated below 4 K, but they diverge above 4 K.

View Article and Find Full Text PDF

Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation.

View Article and Find Full Text PDF

We demonstrate the electrical detection of magnon-magnon hybrid dynamics in yttrium iron garnet/permalloy (YIG/Py) thin film bilayer devices. Direct microwave current injection through the conductive Py layer excites the hybrid dynamics consisting of the uniform mode of Py and the first standing spin wave ( = 1) mode of YIG, which are coupled via interfacial exchange. Both the two hybrid modes, with Py or YIG dominated excitations, can be detected via the spin rectification signals from the conductive Py layer, providing phase resolution of the coupled dynamics.

View Article and Find Full Text PDF

We report the construction and characterization of a comprehensive magnonic-opto-electronic oscillator (MOEO) system based on 1550-nm photonics and yttrium iron garnet (YIG) magnonics. The system exhibits a rich and synergistic parameter space because of the ability to control individual photonic, electronic, and magnonic components. Taking advantage of the spin wave dispersion of YIG, the frequency self-generation as well as the related nonlinear processes becomes sensitive to the external magnetic field.

View Article and Find Full Text PDF

Doping of two-dimensional (2D) semiconductors has been intensively studied toward modulating their electrical, optical, and magnetic properties. While ferromagnetic 2D semiconductors hold promise for future spintronics and valleytronics, the origin of ferromagnetism in 2D materials remains unclear. Here, we show that substitutional Fe-doping of MoSand WSmonolayers induce different magnetic properties.

View Article and Find Full Text PDF

We demonstrate the magnetically-induced transparency (MIT) effect in Y[Formula: see text]Fe[Formula: see text]O[Formula: see text](YIG)/Permalloy (Py) coupled bilayers. The measurement is achieved via a heterodyne detection of the coupled magnetization dynamics using a single wavelength that probes the magneto-optical Kerr and Faraday effects of Py and YIG, respectively. Clear features of the MIT effect are evident from the deeply modulated ferromagnetic resonance of Py due to the perpendicular-standing-spin-wave of YIG.

View Article and Find Full Text PDF

We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)O_{x} formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferromagnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly magnetized CoFeB allows sensitive detection of the exchange bias. We find that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures.

View Article and Find Full Text PDF