Publications by authors named "Xiong Pu"

Personal thermal management (PTM) fabrics with energy efficiency and cost-effectiveness have been rapidly developed in recent years, but it still remains challenging to maintain a favorable body temperature through one cloth in complex and dynamic environments. Herein, we propose an asymmetric fabric for self-adaptive thermal management with the aim of enhancing thermal comfort in outdoor environments. This fabric consists of an electrospun polyamide (PA) fabric and a PPy@MXene coating layer integrated into a kirigami structure.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogels show great promise for smart and biocompatible applications, but improving their mechanical properties and stability in various conditions has been a challenge.
  • Researchers developed a strong and tough organohydrogel using a dual-network structure that incorporates interpenetrated polymer chains and additional materials to enhance its properties.
  • The resulting organohydrogel features impressive tensile strength, stretchability, and ionic conductivity, as well as stability across a wide temperature range, making it suitable for future flexible electronics applications.
View Article and Find Full Text PDF

It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.

View Article and Find Full Text PDF

The limitations and complexity of traditional noncontact sensors in terms of sensitivity and threshold settings pose great challenges to extend the traditional five human senses. Here, we propose tele-perception to enhance human perception and cognition beyond these conventional noncontact sensors. Our bionic multi-receptor skin employs structured doping of inorganic nanoparticles to enhance the local electric field, coupled with advanced deep learning algorithms, achieving a Δ/Δ sensitivity of 14.

View Article and Find Full Text PDF

The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing.

View Article and Find Full Text PDF

Flexoelectricity features the strain gradient-induced mechanoelectric conversion using materials not limited by their crystalline symmetry, but state-of-the-art flexoelectric materials exhibit very small flexoelectric coefficients and are too brittle to withstand large deformations. Here, inspired by the ion polarization in living organisms, this paper reports the giant iontronic flexoelectricity of soft hydrogels where the ion polarization is attributed to the different transfer rates of cations and anions under bending deformations. The flexoelectricity is found to be easily regulated by the types of anion-cation pairs and polymer networks in the hydrogel.

View Article and Find Full Text PDF

Elastomeric solid polymer electrolytes (SPEs) are highly promising to address the solid-solid-interface issues of solid-state lithium metal batteries (LMBs), but compromises have to be made to balance the intrinsic trade-offs among their conductive, resilient and recyclable properties. Here, we propose a dual-bond crosslinking strategy for SPEs to realize simultaneously high ionic conductivity, elastic resilience and recyclability. An elastomeric SPE is therefore designed with hemiaminal dynamic covalent networks and Li-dissociation co-polymer chains, where the -C-N- bond maintains the load-bearing covalent network under stress but is chemically reversible through a non-spontaneous reaction, the weaker intramolecular hydrogen bond is mechanically reversible, and the soft chains endow the rapid ion conduction.

View Article and Find Full Text PDF

Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply.

View Article and Find Full Text PDF

Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as β-d-xylosidases. Salt-tolerant β-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases.

View Article and Find Full Text PDF
Article Synopsis
  • Mechanoelectrical energy conversion offers a promising method for powering small wearable and implantable devices, but current output is limited when using low-frequency motions.
  • Researchers developed a hydrogel generator that significantly increases current output through structural and chemical modifications, enhancing ion flux during compression.
  • This generator can produce a peak current of 4 mA under specific conditions, making it suitable for applications like controlled drug release, and paves the way for more advanced self-powered biomedical systems.
View Article and Find Full Text PDF

Personal thermal management (PTM) of fabrics is vital for human health; the ever-changing location of the human body poses a big challenge for fabrics to maintain a favorable metabolic temperature. Herein, a dual-mode thermal management fabric is designed to achieve both cooling and heating functions by regulating simultaneously solar and body radiations. The cooling or heating mode can be exchanged by flipping the fabric without an external energy supply.

View Article and Find Full Text PDF

The hydrogen evolution reaction (HER) and Zn dendrites growth are two entangled detrimental effects hindering the application of aqueous Zn batteries. The alloying strategy is studied to be a convenient avenue to stabilize Zn anodes, but there still lacks global understanding when selecting reliable alloy elements. Herein, it is proposed to evaluate the Zn alloying elements in a holistic way by considering their effects on HER, zincphilicity, price, and environmental-friendliness.

View Article and Find Full Text PDF

Regular exercise paves the way to a healthy life. However, conventional sports events are susceptible to weather conditions. Current motion sensors for home-based sports are mainly limited by operation power consumption, single-direction sensitivity, or inferior data analysis.

View Article and Find Full Text PDF

Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing.

View Article and Find Full Text PDF

Nontoxic and safe aqueous Zn batteries are largely restricted by the detrimental dendrite growth and hydrogen evolution of Zn metal anode. The (002)-textured Zn electrodeposition, demonstrated as an effective approach for solving these issues, is nevertheless achieved mainly by epitaxial or hetero-epitaxial deposition of Zn on pre-textured substrates. Herein, the electrodeposition of (002)-textured and compact Zn on textureless substrates (commercial Zn, Cu, and Ti foils) at a medium-high galvanostatic current density is reported.

View Article and Find Full Text PDF

Smart wearable technologies are augmenting human bodies beyond our biological capabilities in communication, healthcare and recreation. Energy supply and information acquisition are essential for wearable electronics, whereas the increasing demands in multifunction are raising the requirements for energy and sensor devices. The triboelectric nanogenerator (TENG), proven to be able to convert various mechanical energies into electricity, can fulfill either of these two functions and therefore has drawn extensive attention and research efforts worldwide.

View Article and Find Full Text PDF

Doping engineering in nanostructured carbon materials is an effective approach to modify heteroatom species and surface electronic structures. Herein, an advanced electrode material based on a honeycomb-like porous carbon matrix with tunable N-doped configurations is prepared via 4,4'-bipyridine (4,4'-bpy)-assisted pyrolysis of SiO@ZIF-8 templates and subsequent etching treatment. Interestingly, the amounts of pyridinic-N and graphitic-N can be controlled by rationally varying the content of 4,4'-bpy which acts as the N source in the pyrolysis process.

View Article and Find Full Text PDF

Methamphetamine (METH) addiction and withdrawal cause serious harm to both the immune system and nervous system. However, the pathogenesis remains largely unknown. Herein, we investigated the peripheral cytokines and exosomal transcriptome regulatory networks in the patients with METH use disorders (MUDs) undergoing withdrawal.

View Article and Find Full Text PDF

Rechargeable Zn batteries are widely studied as aqueous, safe, and environmentally friendly alternatives to Li-ion batteries. The 3D porous Zn anode has been extensively reported for suppressing Zn dendrite growth and accelerating the electrode kinetics. However, we demonstrate herein that the undesirable hydrogen evolution reaction (HER) is also exacerbated for porous Zn electrode.

View Article and Find Full Text PDF

Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures.

View Article and Find Full Text PDF

The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching.

View Article and Find Full Text PDF

Artificial haptic sensors form the basis of touch-based human-interfaced applications. However, they are unable to respond to remote events before physical contact. Some elasmobranch fishes, such as seawater sharks, use electroreception somatosensory system for remote environmental perception.

View Article and Find Full Text PDF

Despite that the practical gravimetric energy density of lithium sulfur batteries has exceeded that of the traditional lithium-ion battery, the volumetric energy density still pales due to the low density of carbonaceous materials. Herein, hollow polar nickel selenide (NiSe) with various architectures was designed and employed as a carbon-free sulfur immobilizer. Among them, hollow sea urchins like NiSe with high porosity (0.

View Article and Find Full Text PDF

The next-generation multifunctional soft electronic devices require the development of energy devices possessing comparable functions. In this work, an ultra-stretchable and healable hydrogel-based triboelectric nanogenerator (TENG) is prepared for mechanical energy harvesting and self-powered sensing. An ionic conductive hydrogel was developed with graphene oxide and Laponite.

View Article and Find Full Text PDF

The pursuit to mimic skin exteroceptive ability has motivated the endeavors for epidermal artificial mechanoreceptors. Artificial mechanoreceptors are required to be highly sensitive to capture imperceptible skin deformations and preferably to be self-powered, breathable, lightweight and deformable to satisfy the prolonged wearing demands. It is still struggling to achieve these traits in single device, as it remains difficult to minimize device architecture without sacrificing the sensitivity or stability.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione04t4ffu49b3as7kfn4fa13625baumgi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once