Publications by authors named "Xiol C"

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder caused by the gain of dose of at least the genes MECP2 and IRAK1 and is characterised by intellectual disability (ID), developmental delay, hypotonia, epilepsy and recurrent infections. It mainly affects males, and females can be affected or asymptomatic carriers. Rett syndrome (RTT) is mainly triggered by loss of function mutations in MECP2 and is a well described syndrome that presents ID, epilepsy, lack of purposeful hand use and impaired speech, among others.

View Article and Find Full Text PDF

Background: Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment.

Methods: We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2 mice brain, discriminating between different brain areas.

View Article and Find Full Text PDF

Background: Rett syndrome (RTT) is a neurodevelopmental disorder mainly caused by mutations in the methyl-CpG-binding protein 2 gene (MECP2). MeCP2 is a multi-functional protein involved in many cellular processes, but the mechanisms by which its dysfunction causes disease are not fully understood. The duplication of the MECP2 gene causes a distinct disorder called MECP2 duplication syndrome (MDS), highlighting the importance of tightly regulating its dosage for proper cellular function.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurodevelopmental disease caused almost exclusively by mutations to the gene. This disease may be regarded as a synaptopathy, with impairments affecting synaptic plasticity, inhibitory and excitatory transmission and network excitability. The complete understanding of the mechanisms behind how the transcription factor MeCP2 so profoundly affects the mammalian brain are yet to be determined.

View Article and Find Full Text PDF

In this article, we identified a novel epileptogenic variant (G307R) of the gene , which encodes the GABA transporter GAT-1. Our main goal was to investigate the pathogenic mechanisms of this variant, located near the neurotransmitter permeation pathway, and compare it with other variants located either in the permeation pathway or close to the lipid bilayer. The mutants G307R and A334P, close to the gates of the transporter, could be glycosylated with variable efficiency and reached the membrane, albeit inactive.

View Article and Find Full Text PDF

Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity.

View Article and Find Full Text PDF

Methyl CpG binding protein 2 () is located at Xq28 and is a multifunctional gene with ubiquitous expression. Loss-of-function mutations in are associated with Rett syndrome (RTT), which is a well-characterized disorder that affects mainly females. In boys, however, mutations in can generate a wide spectrum of clinical presentations that range from mild intellectual impairment to severe neonatal encephalopathy and premature death.

View Article and Find Full Text PDF

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls.

View Article and Find Full Text PDF

Rett syndrome, a serious neurodevelopmental disorder, has been associated with an altered expression of different synaptic-related proteins and aberrant glutamatergic and γ-aminobutyric acid (GABA)ergic neurotransmission. Despite its severity, it lacks a therapeutic option. Through this work we aimed to define the relationship between MeCP2 and GABAA.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations.

View Article and Find Full Text PDF

Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the gene, the research community's effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed.

View Article and Find Full Text PDF

Background: Rett syndrome (RTT) is a developmental disorder with an early onset and X-linked dominant inheritance pattern. It is first recognized in infancy and is seen almost always in girls, but it may be seen in boys on rare occasions. Typical RTT is caused by de novo mutations of the gene MECP2 (OMIM*300005), and atypical forms of RTT can be caused by mutations of the CDKL5 (OMIM*300203) and FOXG1 (OMIM*164874) genes.

View Article and Find Full Text PDF

Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that is caused by mutations in the MECP2 gene; however, defects in other genes (CDKL5 and FOXG1) can lead to presentations that resemble classic RTT, although they are not completely identical. Here, we attempted to identify other monogenic disorders that share features of RTT. A total of 437 patients with a clinical diagnosis of RTT-like were studied; in 242 patients, a custom panel with 17 genes related to an RTT-like phenotype was run via a HaloPlex-Target-Enrichment-System.

View Article and Find Full Text PDF