Publications by authors named "Xinzi Tian"

The fabrication of high-performance (opto-)electronic devices based on 2D channel materials requires the optimization of the charge injection at electrode-semiconductor interfaces. While chemical functionalization with chemisorbed self-assembled monolayers has been extensively exploited to adjust the work function of metallic electrodes in bottom-contact devices, such a strategy has not been demonstrated for the top-contact configuration, despite the latter being known to offer enhanced charge-injection characteristics. Here, a novel contact engineering method is developed to functionalize gold electrodes in top-contact field-effect transistors (FETs) via the transfer of chemically pre-modified electrodes.

View Article and Find Full Text PDF

Stability problem of organic semiconductors (OSCs) because of photoabsorption has become a major barrier to large scale applications in organic field-effect transistors (OFETs). It is imperative to design OSCs which are insensitive to visible and near-infrared (VNIR) light to obtain both environmental and operational stability. Herein, taking a 2,3,8,9-tetramethoxy [1,4]benzodithiino[2,3-b][1,4]benzodithiine (TTN2) as an example, we show that controlling molecular configuration is an effective strategy to tune the bandgaps of OSCs for visible-blind OFETs.

View Article and Find Full Text PDF

Two-dimensional molecular crystals (2DMCs) open a new door for the controllable growth of 2D materials by molecular design with a energy gap and solution processability. However, the growth of 2DMCs with defined molecular layers remains full of challenges. Herein, we report a novel method to produce various 2DMCs with a defined number of molecular layers.

View Article and Find Full Text PDF