Plants lack behavioral responses to avoid dramatic environmental changes associated with the annual seasons. For survival, they have evolved complex sensory systems to sense fluctuations in light and optimize their architecture in response to changes in these cues. Phytochrome A (phyA) was initially identified as a photoreceptor that senses far-red light signals.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) of fiber quality traits of upland cotton were conducted to identify the single-nucleotide polymorphic (SNP) loci associated with cotton fiber quality, which lays the foundation for the mining of elite] cotton fiber gene resources and its application in molecular breeding. A total of 612 upland cotton accessions were genotyped using the ZJU Cotton Chip No. 1 40K chip array the liquid-phase probe hybridization-based genotyping-by-target-sequencing (GBTS) technology.
View Article and Find Full Text PDFBackground: Sea island cotton (Gossypium barbadense) has markedly superior high quality fibers, which plays an important role in the textile industry and acts as a donor for upland cotton (G. hirsutum) fiber quality improvement. The genetic characteristics analysis and the identification of key genes will be helpful to understand the mechanism of fiber development and breeding utilization in sea island cotton.
View Article and Find Full Text PDFUpland cotton ( L.) is the most important source of natural fiber in the world. Early-maturity upland cotton varieties are commonly planted in China.
View Article and Find Full Text PDFIdentification of molecular markers associated with fibre traits can accelerate cotton marker-assisted selection (MAS) programmes. In this study, Gossypium barbadense germplasm accessions with diverse origins (n = 123) were used to perform association analysis of fibre traits with 120 polymorphic simple sequence repeat (SSR) markers. In total, 120 polymorphic primer pairs amplified 258 loci with a mean of 2.
View Article and Find Full Text PDF