The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the impact of various pretreatment agents on birch lignin, aiming to enhance its catalytic oxidation and depolymerization under polyoxometalates (POMs) catalysis.
View Article and Find Full Text PDFBackground: Some studies have suggested that the forced expiratory flow between 25 and 75% of vital capacity (FEF) can be used as an early marker of bronchial hyperresponsiveness (BHR) in asthma and allergic rhinitis (AR), but is highly variable. Here, we aimed to assess whether the FEF can be used to diagnose BHR in patients with asthma-like symptoms and AR.
Methods: PubMed, EMBASE, Web of Science, Wiley Online Library, Cochrane Library, SinoMed, CNKI, and Wanfang Data were searched to acquire eligible studies.
Objective: This study provides a comprehensive analysis of endometrial cancer incidence trends in Hong Kong over the past three decades. It aims to evaluate the impact of demographic shifts and epidemiological factors, including age, birth cohort, and diagnosis period, on the incidence rates. The study also projects future trends in endometrial cancer cases up to 2030 and assesses the contributions of these factors using a detailed decomposition approach.
View Article and Find Full Text PDFInterlaminar shear strength (ILSS) and compressive strength are two of the most critical properties of carbon fiber-reinforced polymer (CFRP). In this report, three types of epoxy resins-4,4'-diaminodiphenylmethane epoxy resin (AG-80), bisphenol A epoxy resin (E-1NT), and novolac epoxy (EPN)-were studied. E-1NT is characterized by low viscosity and low cost but exhibits poor mechanical properties, while AG-80 offers better wetting with carbon fiber.
View Article and Find Full Text PDFHigh-energy lithium (Li)-based batteries, especially rechargeable Li-CO batteries with CO fixation capability and high energy density, are desirable for electrified transportation and other applications. However, the challenges of poor stability, low energy efficiency, and leakage of liquid electrolytes hinder the development of Li-CO batteries. Herein, a highly conductive and stable metalorganic framework-encapsulated ionic liquid (IL@MOF) electrolyte system is developed for quasi-solid-state Li-CO batteries.
View Article and Find Full Text PDFA multicomponent heterogeneous semiconductor photocatalytic sulfinylsulfonylation of alkenes with alkyl iodides and SO was displayed under mild metal-free conditions by using boron carbonitride (BCN) as the alternative photocatalyst. This approach has resulted in the production of a wide range of structurally diverse sultine products in moderate to high yields, using readily available starting materials including alkyl iodides and olefins with broad functional group tolerance. The method is also suitable for the late-stage functionalization of complex bioactive molecules.
View Article and Find Full Text PDFRechargeable batteries paired with lithium (Li) metal anodes are considered to be promising high-energy storage systems. However, the use of highly reactive Li metal and the formation of Li dendrites during battery operation would cause safety concerns, especially with the employment of highly flammable liquid electrolytes. Herein, a general strategy by engineering coordination-driven crosslinking networks is proposed to achieve high-performance solid polymer electrolytes.
View Article and Find Full Text PDF(MP) is a common etiological agent of community-acquired pneumonia. However, there has been an increasing incidence of macrolide-unresponsive pneumonia (MUMPP) in recent years. The treatment of MUMPP requires further investigation.
View Article and Find Full Text PDFThis study aimed to explore the pathogenesis of platycodin D and luteolin, which are both active components in Jiegeng (Platycodonis Radix), in the treatment of influenza virus pneumonia through network pharmacology analysis combined with experimental verification. The bioactive components of Jiegeng (Platycodonis Radix) were screened by TCMSP and literature mining, and the results were standardized via the UniProt database. The action targets for the disease were identified from databases including OMIM, GeneCards, TTD, DisGeNET, and PharmGKB.
View Article and Find Full Text PDFHuman milk oligosaccharides (HMOs) are bioactive components which play an important role in infant health. HMO composition is vulnerable to changes of maternal conditions including lactation stages and maternal phenotypes. Pregnant diseases such as gestational diabetes mellitus (GDM) are commonly found in women during pragnancy, and may cause disorder in maternal physiological metabolism which is harmful to infants.
View Article and Find Full Text PDFPARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism.
View Article and Find Full Text PDFIn this study, an ultrasensitive detection platform for tobramycin (TOB) was developed, featuring a "sandwich" structure guided by AgNCs@PDANSs and Thi-AuNCs@ZnONSs. To address the issue of large background current peak signals in tagless sensors, Thi-AuNCs@ZnONSs composites were synthesized as signal tags. Zinc oxide nanosheets (ZnONSs) served as the loading agent, and AuNCs with the electroactive molecule Thi acted as carriers.
View Article and Find Full Text PDFAdsorption of DNA fluorescent probes on GO-FeO is a promising strategy for establishing fluorescent bioassays, often using magnetic separation or fluorescence quenching to generate signals. However, there is a lack of systematic understanding of ssDNA-regulated changes in the enzyme-mimetic activity of GO-FeO, and the accuracy of the results of single-mode fluorescence analysis is susceptible to environmental interference. These limit the rational design and scope of application of the methods.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
July 2024
Background: Hepatocellular carcinoma (HCC) is a malignant tumor that has a high incidence and mortality worldwide. Despite extensive studies, the detailed molecular mechanism of HCC development remains unclear. Studies have shown that the occurrence and development of HCC are closely related to abnormal gene expression.
View Article and Find Full Text PDFRecent studies have identified butanone as a promising biomarker in the breath of lung cancer patients, yet the understanding of its gas-sensing properties remains limited. A key challenge has been to enhance the gas-sensing performance of materials toward butanone, particularly under ultraviolet light exposure. Herein, we report the synthesis of a novel three-dimensional composite material composed of SnO incorporated with BiO using facile hydrothermal and impregnation precipitation methods.
View Article and Find Full Text PDFObjectives: The purpose of this study was evaluating the performance of new Bis-EFMA based bulk-fill composites with common methacrylate based composites and commercial dental composites.
Methods: The Bis-EFMA monomer was synthesized and the novel Bis-EFMA based bulk-fill composites were prepared. The resin composite samples were co-cultured with human gingival epithelial cells and human dental pulp stem cells to test the biocompatibility.
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy.
View Article and Find Full Text PDF