Publications by authors named "Xinyuan Guan"

Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide. According to the Global Cancer Statistics 2020, liver cancer remains the third cause of cancer death globally. Despite significant advances in systemic therapy, HCC still has one of the worst prognoses due to its frequent recurrence and metastasis.

View Article and Find Full Text PDF
Article Synopsis
  • Sorafenib is a first-line drug for advanced hepatocellular carcinoma (HCC), which shows limited effectiveness, but may induce cell death through a process called ferroptosis.
  • The study identified a key regulatory factor, RFX1, that enhances ferroptosis in HCC cells by inhibiting a specific antiporter system and regulating the expression of the BECN1 gene.
  • Findings suggest a new signaling loop involving STAT3 that promotes RFX1 expression and helps explain how sorafenib leads to HCC cell death, offering insights for potential therapeutic strategies.
View Article and Find Full Text PDF

Emerging evidence suggests that cancer cells may disseminate early, prior to the formation of traditional macro-metastases. However, the mechanisms underlying the seeding and transition of early disseminated cancer cells (DCCs) into metastatic tumors remain poorly understood. Through single-cell RNA sequencing, we show that early lung DCCs from esophageal squamous cell carcinoma (ESCC) exhibit a trophoblast-like 'tumor implantation' phenotype, which enhances their dissemination and supports metastatic growth.

View Article and Find Full Text PDF

Early detection is warranted to improve prognosis of gastric cancer (GC) but remains challenging. Liquid biopsy combined with machine learning will provide new insights into diagnostic strategies of GC. Lipid metabolism reprogramming plays a crucial role in the initiation and development of tumors.

View Article and Find Full Text PDF
Article Synopsis
  • - Dormant cancer stem cells (DCSCs) play a crucial role in tumor recurrence and metastasis due to their resistance to chemotherapy and ability to evade the immune system, mainly through enhanced PD-L1 signaling and the influence of quiescin sulfhydryl oxidase 1 (QSOX1).
  • - QSOX1, produced by quiescent fibroblasts, boosts PD-L1 expression in DCSCs and creates an environment that excludes CD8 T cells, thus supporting immune evasion.
  • - Targeting QSOX1 with Ebselen, in combination with anti-PD-1 and chemotherapy, shows promise for successfully eradicating dormant DCSCs and improving patient responses to treatment. *
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) often occurs in the context of fibrosis or cirrhosis. Methylation of histone is an important epigenetic mechanism, but it is unclear whether histone methyltransferases are potent targets for fibrosis-associated HCC therapy. ASH1L, an H3K4 methyltransferase, is found at higher levels in activated hepatic stellate cells (HSCs) and hepatoma cells.

View Article and Find Full Text PDF

Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy.

View Article and Find Full Text PDF

Metastasis is the biggest obstacle to esophageal squamous cell carcinoma (ESCC) treatment. Single-cell RNA sequencing analyses are applied to investigate lung metastatic ESCC cells isolated from pulmonary metastasis mouse model at multiple timepoints to characterize early metastatic microenvironment. A small population of parental KYSE30 cell line (Cluster S) resembling metastasis-initiating cells (MICs) is identified because they survive and colonize at lung metastatic sites.

View Article and Find Full Text PDF

Introduction: Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed.

View Article and Find Full Text PDF

Unlabelled: Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity.

View Article and Find Full Text PDF

The serine/threonine protein phosphatase family involves series of cellular processes, such as pre-mRNA splicing. The function of one of its members, protein phosphatase, Mg/Mn2+ dependent 1G (PPM1G), remains unclear in hepatocellular carcinoma (HCC). Our results demonstrated that PPM1G was significantly overexpressed in HCC cells and tumor tissues compared with the normal liver tissues at both protein and RNA levels.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a leading cause of cancer mortality globally. Lymph node metastasis and immunosuppression are main factors of poor prognosis in CRC patients. Lysyl oxidase like 1 (LOXL1), part of the lysyl oxidase (LOX) family, plays a yet unclear role in CRC.

View Article and Find Full Text PDF

Tumor lineage plasticity, considered a hallmark of cancer, denotes the phenomenon in which tumor cells co-opt developmental pathways to attain cellular plasticity, enabling them to evade targeted therapeutic interventions. However, the underlying molecular events remain largely elusive. Our recent study identified CD133/Prom1 in hepatocellular carcinoma (HCC) tumors to mark proliferative tumor-propagating cells with cancer stem cell-like properties, that follow a dedifferentiation trajectory towards a more embryonic state.

View Article and Find Full Text PDF

Digital DNA amplification is a powerful method for detecting and quantifying rare nucleic acids. In this study, we developed a multi-functional droplet-based platform that integrates the traditional digital DNA amplification workflow into a one-step device. This platform enables efficient droplet generation, transition, and signal detection within a 5-min timeframe, distributing the sample into a uniform array of 4 × 10 droplets (variation <2%) within a chamber.

View Article and Find Full Text PDF

Tumors usually display fetal-like characteristics, and many oncofetal proteins have been identified. However, fetal-like reprogramming of RNA splicing in hepatocellular carcinoma (HCC) is poorly understood. Here, it is demonstrated that the expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA splicing factor, is suppressed in fetal hepatocytes and HCC, in parallel with tumor progression.

View Article and Find Full Text PDF

Although many studies have compared tumor fibroblasts (T-Fbs) and nontumor fibroblasts (N-Fbs), less is understood about the stromal contribution of metastatic lymph node fibroblasts (LN-Fbs) to the evolving microenvironment. Here, we explored the characteristics of LN-Fbs in esophageal squamous cell carcinoma (ESCC) and the interactions between fibroblasts and ESCC tumor cells in metastatic lymph nodes. Fibroblasts were isolated from tumor, nontumor and metastatic lymph node tissues from different patients with ESCC.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) play vital roles in establishing a suitable tumor microenvironment. In this study, RNA sequencing data revealed that CAFs could promote cell proliferation, angiogenesis, and ECM reconstitution by binding to integrin families and activating PI3K/AKT pathways in esophageal squamous cell carcinoma (ESCC). The secretions of CAFs play an important role in regulating these biological activities.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance.

View Article and Find Full Text PDF

Background And Purpose: Physiological changes in tumour occur much earlier than morphological changes. They can potentially be used as biomarkers for therapeutic response prediction. This study aimed to investigate the optimal time for early therapeutic response prediction with multi-parametric magnetic resonance imaging (MRI) in patients with nasopharyngeal carcinoma (NPC) receiving concurrent chemo-radiotherapy (CCRT).

View Article and Find Full Text PDF

Emerging evidence has shown the importance of the tumor microenvironment in tumorigenesis and progression. Cancer-associated fibroblasts (CAFs) are one of the most infiltrated stroma cells of the tumor microenvironment in gastrointestinal tumors. CAFs play crucial roles in tumor development and therapeutic response by biologically secreting soluble factors or structurally remodeling the extracellular matrix.

View Article and Find Full Text PDF

Most mature B cells can be divided into four subtypes based on the expression of the surface markers IgD and CD27: IgD CD27 naïve B cells, IgD CD27 unswitched memory B cells, IgD CD27 switched memory B cells, and IgD CD27 double-negative (DN) B cells. Despite their small population size in normal peripheral blood, DN B cells play integral roles in various diseases. For example, they generate autoimmunity in autoimmune conditions, while these cells may generate both autoimmune and antipathogenic responses in COVID-19, or act in a purely antipathogenic capacity in malaria.

View Article and Find Full Text PDF

Despite the intense CD8+ T-cell infiltration in the tumor microenvironment of nasopharyngeal carcinoma, anti-PD-1 immunotherapy shows an unsatisfactory response rate in clinical trials, hindered by immunosuppressive signals. To understand how microenvironmental characteristics alter immune homeostasis and limit immunotherapy efficacy in nasopharyngeal carcinoma, here we establish a multi-center single-cell cohort based on public data, containing 357,206 cells from 50 patient samples. We reveal that nasopharyngeal carcinoma cells enhance development and suppressive activity of regulatory T cells via CD70-CD27 interaction.

View Article and Find Full Text PDF

Ferroptosis is the cell death induced by ferrous ions and lipid peroxidation accumulation in tumor cells. Targeting ferroptosis, which is regulated by various metabolic and immune elements, might become a novel strategy for anti-tumor therapy. In this review, we will focus on the mechanism of ferroptosis and its interaction with cancer and tumor immune microenvironment, especially for the relationship between immune cells and ferroptosis.

View Article and Find Full Text PDF