BACKGROUND Aminoglycosides, a type of gram-negative antibacterial, are broad-spectrum antibiotics that are highly potent and have satisfactory therapeutic efficacy in the treatment of life-threatening infections. Our study aimed to establish a gentamicin-induced cochlear injury model and to investigate the cochlear nerve endings' recognition of ultrasound signals. MATERIAL AND METHODS A guinea pig cochlear injury model was established by intraperitoneal injection of gentamycin.
View Article and Find Full Text PDFThe cochlea of guinea pigs was irradiated with different frequencies of bone-conducted ultrasound (BCU) at a specific dose to induce cochlear hair cell-specific injuries, in order to establish frequency-related cochlear hair cell-specific injury models. Cochlear near-field potentials were then evoked using BCU of different frequencies and intensities to explore the peripheral coding and recognition of BCU by the cochlea. The inner ears of guinea pigs were irradiated by 30 kHz at 100 db and 80 kHz at100 db BCU for 6h to create frequency-related, ultrasound-specific cochlear injury models.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
August 2018
We established a specific ultrasound frequency-dependent model of cochlear injury using bone conduction ultrasounds in the inner ear of guinea pigs at 50 kHz and 83 kHz, to explore the effects of bone conduction ultrasound in the cochlea. To establish a unilateral cochlear damage model, the unilateral cochlea was destroyed. The control group consisted of 50 kHz and 83 kHz bone conduction ultrasounds in unaltered guinea pigs.
View Article and Find Full Text PDF