Background: Dorsal root ganglia (DRGs) contain sensory neurons that innervate intervertebral discs (IVDs) and may play a critical role in mediating low-back pain (LBP), but the potential pathophysiological mechanism needs to be clarified.
Methods: A discogenic LBP model in rats was established by penetration of a lumbar IVD. The severity of LBP was evaluated through behavioral analysis, and the gene and protein expression levels of pro-algesic peptide substance P (SP) and calcitonin gene-related peptide (CGRP) in DRGs were quantified.
Nitrogen nutrient salts are considered the major environmental factors (R0.92, R0.85) affecting the structure and distribution of denitrogen bacteria.
View Article and Find Full Text PDFTwo major complications of indwelling urinary catheterisation include infection and mineral encrustation of the catheter. Our antimicrobial urinary catheter (AUC) impregnated with rifampicin, triclosan, and sparfloxacin has demonstrated long-term protective activity against major uropathogens. This study aimed to firstly assess the ability of the AUC to resist mineral encrustation in the presence and absence of bacteria.
View Article and Find Full Text PDFHow to explain the effect of seasonal water transfer on the carbon stocks of Baiyangdian wetland is studied. The ecological model of the relationship between the carbon stocks and water depth fluctuation of the reed was established by using STELLA software. For the first time the Michaelis-Menten equation (1) introduced the relation function between the water depth and reed environmental carrying capacity, (2) introduced the concept of suitable growth water depth, and (3) simulated the variation rules of water and reed carbon stocks of artificial adjustment.
View Article and Find Full Text PDFCobalt-catalyzed decarboxylative cross-coupling of oxazoles and thiazoles with α-oxocarboxylic acids was developed through an sp(2) C-H bond functionalization process. This work represents the first example of cobalt-catalyzed decarboxylative C-H bond functionalization and provides an efficient means of building some important bioactive heteroaryl ketone derivatives.
View Article and Find Full Text PDFCatheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce the risk of bacterial colonization of the catheters for long-term users have not been successful, mainly because of the need for long duration of activity in flow conditions. Here we report the results of impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan.
View Article and Find Full Text PDFChem Commun (Camb)
February 2015
A nickel-catalyzed and benzoic acid-promoted direct sulfenylation of unactivated arenes using removable 2-(pyridine-2-yl)-isopropylamine as a directing group is described. This strategy provides an efficient access to valuable aryl sulfides with ample substrate scope and a high degree of functional group tolerance.
View Article and Find Full Text PDFPurpose: Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix.
View Article and Find Full Text PDFNonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure.
View Article and Find Full Text PDFNanoparticles have been applied into the construction of micro- and nanoscaled surface structures with extreme wettability over the past few years. However, the details of processing and employing colloidal nanosuspensions for this purpose have not yet been fully investigated. In this work, we study the surface structures formed via nanosuspensions, in which nanoparticles of solid phase are presented, and the caused surface wettability.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2012
The knowledge of mechanical properties of root cell walls is vital to understand how these properties interact with relevant genetic and physiological processes to bring about growth. Expansion of cell walls is an essential component of growth, and the regulation of cell wall expansion is one of the ways in which the mechanics of growth is controlled, managed and directed. In this study, the inherent surface mechanical properties of living Arabidopsis thaliana whole-root epidermal cells were studied at the nanoscale using the technique of atomic force microscopy (AFM).
View Article and Find Full Text PDFInjectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP).
View Article and Find Full Text PDFAtomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with disparate hydrophilicities that show reversibility between pitted and protruding nanoscale topographies.
View Article and Find Full Text PDFHere we present a study of five analogues of a fragment from the shaft domain of the adenovirus fibre protein that readily form fibrils under a range of conditions. Using atomic force microscopy the fibrillisation of these peptides at the liquid/solid interface utilizing ordered crystalline substrates has been investigated. Our results demonstrate that the assembly pathway at the liquid/solid interface enables only the formation of truncated fibrillar structures, which align along the substrate's underlying atomic lattice during growth.
View Article and Find Full Text PDFThe Escherichia coli curved DNA-binding protein A (CbpA) is a nucleoid-associated DNA-binding factor and chaperone that is expressed at high levels as cells enter stationary phase. Using a combination of genetics, biochemistry, structural modelling and single-molecule atomic force microscopy we have examined dimerization of, and DNA binding by, CbpA. Our data show that CbpA dimerization is driven by a hydrophobic surface comprising amino acid side chains W287 and L290 located on the same side of an α helix close to the C-terminus of CbpA.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) are pluripotent and have the ability to differentiate into mineralising cells in vitro. The use of pluripotent cells in engineered bone substitutes will benefit from the development of bioactive scaffolds which encourage cell differentiation and tissue development. Extracellular matrix (ECM) may be a suitable candidate for use in such scaffolds since it plays an active role in cellular differentiation.
View Article and Find Full Text PDFEmbryonic stem cells (ESC) are both a potential source of cells for tissue replacement therapies and an accessible tool to model early embryonic development. Chemical factors such as soluble growth factors and insoluble components of the extracellular matrix are known to affect the differentiation of murine ESCs. However, there is also evidence to suggest that undifferentiated cells can both sense the mechanical properties of their environment and differentiate accordingly.
View Article and Find Full Text PDFThe solution properties of a series of transition-metal-ligand coordination polymers [ML(X)(n)](infinity) [M=Ag(I), Zn(II), Hg(II) and Cd(II); L=4,4'-bipyridine (4,4'-bipy), pyrazine (pyz), 3,4'-bipyridine (3,4'-bipy), 4-(10-(pyridin-4-yl)anthracen-9-yl)pyridine (anbp); X=NO(3) (-), CH(3)COO(-), CF(3)SO(3) (-), Cl(-), BF(4) (-); n=1 or 2] in the presence of competing anions, metal cations and ligands have been investigated systematically. Providing that the solubility of the starting complex is sufficiently high, all the components of the coordination polymer, namely the anion, the cation and the ligand, can be exchanged on contact with a solution phase of a competing component. The solubility of coordination polymers is a key factor in the analysis of their reactivity and this solubility depends strongly on the physical properties of the solvent and on its ability to bind metal cations constituting the backbone of the coordination polymer.
View Article and Find Full Text PDFFormation of a solid solution of a drug in a water-soluble polymer is one of the primary techniques used to improve the dissolution rate and thus bioavailability of a poorly water-soluble drug. Understanding and detecting the state of the drug inside such a polymer matrix is critically important since issues such as drug stability, safety and efficacy can be greatly affected. In this study, two model formulations were prepared containing low and high levels of drug content.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2009
To date limited consideration has been given to the physical interaction between inhaled drug particles and pulmonary surfactant (PS). This study combines atomic force microscopy (AFM) with a Langmuir-Blodgett (LB) approach to quantify the force of adhesion between micronised budesonide particles and simulated PS monolayers. A LB approach was used to prepare Survanta monolayers at pre-determined surface pressures and AFM was employed to facilitate their visualisation.
View Article and Find Full Text PDFSelf-assembling aromatic dipeptides are among the smallest known biological materials which readily form ordered nanostructures. The simplicity of nanotube formation makes them highly desirable for a range of bionanotechnology applications. Here, we investigate the application of the atomic force microscope as a thermomechanical lithographic tool for the machining of nanotubes formed by two self-assembling aromatic peptides; diphenylalanine and dinapthylalanine.
View Article and Find Full Text PDFPurpose: This study was undertaken to investigate the rheological properties of inter-granular material bridges on the nano-scale when strained at high shear rates.
Materials And Methods: Atomic force microscopy (AFM) was used as a rheometer to measure the viscoelasticity of inter-granular material bridges for lactose:PVP K29/32 and lactose:PVP K90 granules, produced by wet granulation.
Results: The loss tangent (tan delta) and both the storage (G') and loss shear moduli (G'') of inter-granular material bridges were measured as a function of the probe-sample separation distance, oscillation frequency and relative humidity (RH).
The Malian medicinal plant Biophytum petersianum Klotzsch (Oxalidaceae) is used as a treatment against various types of illnesses related to the immune system, such as joint pains, inflammations, fever, malaria, and wounds. A pectic polysaccharide obtained from a hot water extract of the aerial parts of B. petersianum has previously been reported to consist of arabinogalactans types I and II (AG-I and AG-II), probably linked to a rhamnogalacturonan backbone.
View Article and Find Full Text PDFMonolayers of octadecylphosphonic acid were self-assembled on silicon substrates sputter coated with aluminum. Patterning of the self-assembled monolayer was achieved by high-energy electron (50 kV) illumination using an electron beam lithography tool. The change in chemical composition of the exposed monolayer was investigated by time-of-flight secondary ion mass spectrometry over an area of 100 x 100 microm2.
View Article and Find Full Text PDFThe aim of this paper was to further elucidate the structure and the immunomodulating properties of the pectic polymer GOA2, previously isolated from Glinus oppositifolius. Enzymatic treatment of GOA2 by endo-alpha-d-(1 --> 4)-polygalacturonase led to the isolation of three pectic subunits, GOA2-I, GOA2-II, and GOA2-III, in addition to oligogalacturonides. GOA2-I was shown to consist of 1,2-linked Rhap and 1,4-linked GalpA in an approximately 1:1 ratio, and NMR-analysis showed that the monomers were linked together in a strictly alternating manner.
View Article and Find Full Text PDF