Publications by authors named "Xinying Peng"

Traditional Chinese medicine (TCM) prescription, with its intricate formulations and nuanced compositions, is a cornerstone of holistic health practices. However, the expansion of the TCM market has led to a surge in herb adulteration, which significantly undermines the quality and safety of these medicinal products. A case in point is Lonicerae Japonicae Flos (LJF), a widely utilized herb for treating colds, which has been adulterated by the cheaper Lonicerae Flos (LF), thereby affecting its therapeutic effectiveness.

View Article and Find Full Text PDF

CoSb has emerged as an important two-dimensional (2D) atomic crystal for its potential application in energy conversion and superconductivity. Controllable growth in terms of thickness and structural phase is necessary to elucidate its intrinsic properties at the 2D limit. Here we demonstrate the chemical vapour deposition of ultrathin hexagonal CoSb crystals on the mica substrate.

View Article and Find Full Text PDF

In this study, we report the successful synthesis of few-layer parallel PtSeribbons on an Au foil employing a surface melting strategythe chemical vapor deposition growth method at 650 °C. The controlled formation of parallel ribbons was directed by the Au steps generated through antimony treatment. These ribbons exhibit an average length of exceeding 100m and a width of approximately 100 nm across a substantial area.

View Article and Find Full Text PDF

Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.

View Article and Find Full Text PDF

This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed.

View Article and Find Full Text PDF

The position of school principal is emotionally demanding. Principals' occupational well-being (OWB) can be influenced by their emotional work characteristics, and their emotional regulation plays a critical role. Based on the job demands-resources (JD-R) model, this study investigated the relationships between kindergarten principals' OWB and its complex antecedents.

View Article and Find Full Text PDF

Spider silk has attracted extensive attention in the development of high-performance tissue engineering materials because of its excellent physical properties, biocompatibility, and biodegradability. Although high-molecular-weight recombinant spider silk proteins can be obtained through metabolic engineering of host bacteria, the solubility of the recombinant protein products is always poor. Strong denaturants and organic solvents have thus had to be exploited for their dissolution, and this seriously limits the applications of recombinant spider silk protein-based composite biomaterials.

View Article and Find Full Text PDF

The whole ecosystem is suffering from serious plastic pollution. Automatic and accurate classification is an essential process in plastic effective recycle. In this work, we proposed an accurate approach for plastics classification using a residual network based on laser-induced breakdown spectroscopy (LIBS).

View Article and Find Full Text PDF

Collagen hydrogels have been widely investigated as scaffolds for tissue engineering due to their biocompatibility and capacity to promote cell adhesion. However, insufficient mechanical strength and rapid degradation properties remain the major obstacles for their applications. In the present study, type-I tilapia collagen (TC) was functionalized to form methacrylated tilapia collagen (MATC) by introducing methacrylic acid, developing a photo-cross-linked PEGDA-MATC hydrogel.

View Article and Find Full Text PDF

Collagen has been widely documented as one of the most promising and competitive biomaterials for tissue engineering and medical applications. However, the properties of collagen differ from one source to another. In the present study, type I collagen (COL-I) was extracted and purified from the skins of Japanese sea bass (Lateolabrax japonicus) and Nile tilapia (Oreochromis niloticus).

View Article and Find Full Text PDF

Protein A affinity chromatography, featured by its robustness and high-specificity, is still dominant as a first capture step for the purification of immunoglobulin G monoclonal antibodies (IgG mAbs). However, the material and operational costs of protein A are universally recognized as high, and its productivity is also limited as column mode. In order to overcome these limitations, industry is increasingly considering the use of non-protein A-based processes for IgG purification.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies become the major product class within the biopharmaceutical market. Protein A as the first capture step is still dominant in current platforms for purification of monoclonal antibodies. In this study, we developed a new antibody harvest process that incorporates acidic treatment of cell harvest, demonstrating high process yield, improved clearance of host cell associated contaminants, like non-histone host cell protein, histone, DNA and heteroaggregates.

View Article and Find Full Text PDF