This paper summarizes results from two large lung cancer studies comprising over 700 samples that demonstrate the ability of spectral histopathology (SHP) to distinguish cancerous tissue regions from normal tissue, to differentiate benign lesions from normal tissue and cancerous lesions, and to classify lung cancer types. Furthermore, malignancy-associated changes can be identified in cancer-adjacent normal tissue. The ability to differentiate a multitude of normal cells and tissue types allow SHP to identify tumor margins and immune cell infiltration.
View Article and Find Full Text PDFThis paper reviews methods to arrive at optimum decision tree or label tree structures to analyze large SHP datasets. Supervised methods of analysis can utilize either sequential or (flat) multi-classifiers depending on the variance in the data, and on the number of spectral classes to be distinguished. For small number of spectral classes, multi-classifiers have been used in the past, but for the analysis of datasets containing large numbers (∼20) of disease or tissue types, mixed decision tree structures were found to be advantageous.
View Article and Find Full Text PDFArch Pathol Lab Med
February 2019
This paper reports the results of a collaborative lung cancer study between City of Hope Cancer Center (Duarte, California) and CIRECA, LLC (Cambridge, Massachusetts), comprising 328 samples from 249 patients, that used an optical technique known as spectral histopathology (SHP) for tissue classification. Because SHP is based on a physical measurement, it renders diagnoses on a more objective and reproducible basis than methods based on assessing cell morphology and tissue architecture. This report demonstrates that SHP provides distinction of adenocarcinomas from squamous cell carcinomas of the lung with an accuracy comparable to that of immunohistochemistry and highly reliable classification of adenosquamous carcinoma.
View Article and Find Full Text PDFThis article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis.
View Article and Find Full Text PDFWe report results on a statistical analysis of an infrared spectral dataset comprising a total of 388 lung biopsies from 374 patients. The method of correlating classical and spectral results and analyzing the resulting data has been referred to as spectral histopathology (SHP) in the past. Here, we show that standard bio-statistical procedures, such as strict separation of training and blinded test sets, result in a balanced accuracy of better than 95% for the distinction of normal, necrotic and cancerous tissues, and better than 90% balanced accuracy for the classification of small cell, squamous cell and adenocarcinomas.
View Article and Find Full Text PDFWe report results of a study utilizing a novel tissue classification method, based on label-free spectral techniques, for the classification of lung cancer histopathological samples on a tissue microarray. The spectral diagnostic method allows reproducible and objective classification of unstained tissue sections. This is accomplished by acquiring infrared data sets containing thousands of spectra, each collected from tissue pixels ∼6 μm on edge; these pixel spectra contain an encoded snapshot of the entire biochemical composition of the pixel area.
View Article and Find Full Text PDF