Objectives: To develop a dynamic self-attention and feature discrimination loss function (DSDF) model for identifying oral mucosal diseases presented to solve the problems of data imbalance, complex image background, and high similarity and difference of visual characteristics among different types of lesion areas.
Methods: In DSDF, dynamic self-attention network can fully mine the context information between adjacent areas, improve the visual representation of the network, and promote the network model to learn and locate the image area of interest. Then, the feature discrimination loss function is used to constrain the diversity of channel characteristics, so as to enhance the feature discrimination ability of local similar areas.