Purpose: To describe a surgical technique for Descemet membrane endothelial keratoplasty (DMEK) using a pull-through, endothelium-in insertion device, the DMEK EndoGlide. We evaluated the endothelial cell loss (ECL) associated with the EndoGlide-DMEK (E-DMEK) technique in both ex vivo and prospective clinical studies.
Methods: The ex vivo study involved calcein acetoxymethyl staining and preparation of DMEK grafts, which were trifolded endothelium-in, loaded into the EndoGlide, pulled through, and unfolded in imaging dishes.
The corneal endothelium regulates corneal hydration to maintain the transparency of cornea. Lacking regenerative capacity, corneal endothelial cell loss due to aging and diseases can lead to corneal edema and vision loss. There is limited information on the existence of corneal endothelial progenitors.
View Article and Find Full Text PDFPurpose: To describe a novel lamellar dissection technique for Descemet membrane endothelial keratoplasty (DMEK) graft preparation, and to evaluate the rate of endothelial cell loss (ECL) and graft preparation failure associated with this technique.
Methods: We conducted an ex vivo laboratory-based study comparing ECL between the lamellar dissection and peeling techniques. Eight pairs of human donor corneas underwent calcein acetoxymethyl staining-all right eyes underwent the peeling technique and all left eyes underwent the lamellar dissection technique.
Restoration of vision due to corneal blindness from corneal endothelial dysfunction can be achieved via a corneal transplantation. However, global shortage of donor tissues has driven the development cell-based therapeutics. With the capacity to propagate regulatory compliant human corneal endothelial cells (CEnCs), this study evaluated the functionality of propagated CEnCs delivered via tissue-engineered endothelial keratoplasty (TE-EK) or corneal endothelial cell injection (CE-CI) within a rabbit model of bullous keratopathy.
View Article and Find Full Text PDFThe conjunctiva is a clear tissue covering the white part of the eye and lines the back of the eyelids. Conjunctival diseases, such as symblepharon, cause inflammation, discharges, and photophobia. The treatment often requires excision of large parts of conjunctiva.
View Article and Find Full Text PDFTransl Vis Sci Technol
September 2018
Purpose: We define optical coherence tomography (OCT) measurement parameters of the corneal endothelium/Descemet's membrane (DM) complex and peripheral transition zone (TZ) and describe these measurements in an ethnically Chinese population.
Methods: OCT images of the anterior segment and iridocorneal angle were obtained from 129 healthy Chinese subjects (129 eyes), aged 40 to 81 years. The scleral spur (SS) and Schwalbe's line (SL) were identified in each image.
Purpose: To evaluate the safety and feasibility of intrastromal injection of human corneal stromal keratocytes (CSKs) and its therapeutic effect on a rodent early corneal opacity model.
Methods: Twelve research-grade donor corneas were used in primary culture to generate quiescent CSKs and activated stromal fibroblasts (SFs). Single and repeated intrastromal injections of 2 to 4 × 104 cells to rat normal corneas (n = 52) or corneas with early opacities induced by irregular phototherapeutic keratectomy (n = 16) were performed, followed by weekly examination of corneal response under slit-lamp biomicroscopy and in vivo confocal microscopy with evaluation of haze level and stromal reflectivity, and corneal thickness using anterior segment optical coherence tomography (AS-OCT).
Corneal transplantation is the only treatment available to restore vision for individuals with blindness due to corneal endothelial dysfunction. However, severe shortage of available donor corneas remains a global challenge. Functional regulatory compliant tissue-engineered corneal endothelial graft substitute can alleviate this reliance on cadaveric corneal graft material.
View Article and Find Full Text PDFPurpose: To establish a method for assessing graft viability, in-vivo, following corneal transplantation.
Methods: Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model.
Purpose: To characterize the differences in corneal endothelial wound healing in the presence or absence of Descemet's membrane (DM), in vivo.
Methods: New-Zealand white rabbits were subjected to 7-mm endothelial wound either by scraping (n = 8; DM intact), peeling (n = 6; DM removed), or a combinatory scrape/peel wound (n = 6). In a second experiment, rabbits underwent peel wound with immediate transplantation of pure decellularized human DM (n = 4).
Recent developments in optical coherence tomography (OCT) systems for the cornea have limited resolution or acquisition speed. In this study we aim to evaluate the use of a 'micro-OCT' (μOCT ~1 μm axial resolution) compared to existing imaging modalities using animal models of corneal endothelial disease. We used established cryoinjury and bullous keratopathy models in Sprague Dawley rats comparing ex vivo μOCT imaging in normal and diseased eyes to (1) histology; (2) in vivo confocal microscopy (IVCM); and (3) scanning electron microscopy (SEM).
View Article and Find Full Text PDFThe introduction of femtosecond laser assisted cataract surgery (FLACS) is a paradigm changing approach in cataract surgery, the most commonly performed surgical procedure. FLACS has the potential to optimize the creation of an anterior lens capsulotomy, a critical step in accessing the cataractous lens. The merits of using a laser instead of a manual approach include a potentially more circular, consistent, and stronger aperture.
View Article and Find Full Text PDFCell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell.
View Article and Find Full Text PDFThe global shortage of donor corneas has garnered extensive interest in the development of graft alternatives suitable for endothelial keratoplasty using cultivated primary human corneal endothelial cells (CECs). We have recently described a dual media approach for the propagation of human CECs. In this work, we characterize the effects of a Rho-kinase inhibitor Y-27632 on the cultivation of CECs propagated using the dual media culture system.
View Article and Find Full Text PDFCorneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials.
View Article and Find Full Text PDFPurpose: There is a lack of definitive cell surface markers to differentiate cultured human corneal endothelial cells (HCECs) from stromal fibroblasts, which could contaminate HCEC cultures. The aim of our study is to discover cell surface antigens on HCECs that can be used to identify and purify HCECs from stromal fibroblasts.
Methods: RNA sequencing (RNA-seq) was used to find differentially overexpressed genes in HCECs and commercial antibodies against these overexpressed antigens were screened by immunofluorescence assay.
Background: Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology.
View Article and Find Full Text PDF