Background: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown.
View Article and Find Full Text PDFThe mechanical response and relaxation behavior of hydrogels are crucial to their diverse functions and applications. However, understanding how stress relaxation depends on the material properties of hydrogels and accurately modeling relaxation behavior at multiple time scales remains a challenge for soft matter mechanics and soft material design. While a crossover phenomenon in stress relaxation has been observed in hydrogels, living cells, and tissues, little is known about how the crossover behavior and characteristic crossover time depend on material properties.
View Article and Find Full Text PDFPhotocatalysis has been vastly employed as a feasible and efficient strategy for the removal of environmental pollutants. In this study, a well-designed core-shell heterojunction of WO decorated with ZnInS nanosheets were fabricated under mild in-situ conditions, and fabricated processes were systematically investigated with different fabrication durations. The coupling of WO and ZnInS (ZIS) resulted in a Z-scheme mechanism for charge carrier transfer, holding the respective redox capacity.
View Article and Find Full Text PDFThe photocatalytic efficiency is limited by poor charge separation efficiency and high carrier transport activation energy (CTAE) of photogenerated electron/hole pairs than traditional semiconductor. Hybridizing nanostructure with two staggered alignment band structure is proved as an effective strategy to mitigate these two challenges but still suffers a strong coulomb electrostatic repulsive force between two heterogeneous semiconductors. Here, we steer a friendly sulfurization process to construct BiVO@BiS heterojunction with a scenario of cosharing Bi atoms.
View Article and Find Full Text PDFElectrochemically reducing carbon dioxide (CO RR) to ethylene is one of the most promising strategies to reduce carbon dioxide emissions and simultaneously produce high value-added chemicals. However, the lack of catalysts with excellent activity and stability limits the large-scale application of this technology. In this work, a graphitic carbon nitride (g-C N )-supported Cu O composite was fabricated, which exhibited a 32.
View Article and Find Full Text PDFTo solve the intrinsic deficiency inherited from the large band gap of ZnSn(OH)6 (ZSH), a gradual sulfur doping strategy is first proposed here to expand the optical absorption range, improve the separation efficiency of photogenerated electron-hole pairs, and thus enhance the photocatalytic activity. It is demonstrated that the distribution of sulfur in the flower-like ZSH (the sulfur doped sample is denoted as S-ZSH) tends to be largest on the outer most surface and becomes smaller towards the interior. The S-ZSH therefore has a gradual bandgap structure that is beneficial for transferring photogenerated charge carriers from the interior to the surface, which will greatly enhance the utilization of photoelectrons.
View Article and Find Full Text PDFDuring partial oxidation of methane (POM), the greatest challenge is to maintain the thermal stability of the catalyst at high temperatures. One of the most effective ways to improve thermal stability is to construct core-shell structure. Herein, using a microemulsion method, we synthesized a core-shell Ni/nanorod-CeO2@SiO2 catalyst, in which the Ni nanoparticles were supported on the CeO2 nanorods and encapsulated by SiO2 shells.
View Article and Find Full Text PDF