Cancer continues to pose remarkable medical challenges worldwide. While current cancer therapies can lead to initial clinical improvement, they are often followed by recurrence, metastasis, and drug resistance, underscoring the urgent need for innovative treatment strategies. Atorvastatin calcium (AC), a widely used lipid-lowering and anti-inflammation drug in the clinic, has shown antitumor potential.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFChemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.
View Article and Find Full Text PDFOsteosarcoma tissues demonstrated elevated expression of proteins (FDX1 and DLAT) integral to cuproptosis in our preliminary study, indicating the potential effectiveness of anti-tumor strategies predicated on this process. Nevertheless, the overexpression of copper export proteins and the challenge of copper ion penetration may contribute to insufficient local copper ion concentration for inducing cuproptosis. Herein, we engineered a biomimetic copper-elesclomol-polyphenol network for the efficient delivery of copper ions and the copper ionophore elesclomol.
View Article and Find Full Text PDFThe precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect.
View Article and Find Full Text PDFBone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases.
View Article and Find Full Text PDFAcute inflammation has the potential for the recruitment of immune cells, inhibiting tumor angiogenesis, metastasis, and drug resistance thereby overcoming the tumor immunosuppressive microenvironment caused by chronic inflammation. Here, an acute inflammation inducer using bacteria outer membrane vesicles (OMVs) loaded in thermal-sensitive hydrogel (named OMVs-gel) for localized and controlled release of OMVs in tumor sites is proposed. OMVs trigger neutrophil recruitment and amplify acute inflammation inside tumor tissues.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) aggregates called Lewy bodies leading to the gradual loss of dopaminergic (DA) neurons in the substantia nigra. Although α-syn expression can be attenuated by antisense oligonucleotides (ASOs) and heteroduplex oligonucleotide (HDO) by intracerebroventricular (ICV) injection, the challenge to peripheral targeted delivery of oligonucleotide safely and effectively into DA neurons remains unresolved. Here, we designed a new DNA/DNA double-stranded (complementary DNA, coDNA) molecule with cholesterol conjugation (Chol-HDO (coDNA)) based on an α-syn-ASO sequence and evaluated its silence efficiency.
View Article and Find Full Text PDFImmunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment.
View Article and Find Full Text PDFThe clinical use of anti-EGFR antibody-based cancer therapy has been limited by antibody-EGFR binding in normal tissues, so developing pH-dependent anti-EGFR antibodies that selectively bind with EGFR in tumors-by taking advantage of the acidity of tumor microenvironment relative to normal tissues-may overcome these limitations. Here, we generated pH-dependent anti-EGFR antibodies with cross-species reactivity for human and mouse EGFR, and we demonstrate that pH-dependent antibodies exhibit tumor-selective binding by binding strongly to EGFR under acidic conditions (pH 6.5) but binding weakly under neutral (pH 7.
View Article and Find Full Text PDFThe cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8 T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells.
View Article and Find Full Text PDFExtracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis.
View Article and Find Full Text PDFAs two of the most widely used adjuvants, aluminum hydroxide and the oil-in-water emulsion MF59 have their intrinsic limitations: classical aluminum gel induces only weak cellular immune responses while MF59 cannot be used as an antigen delivery system due to its poor physical interaction with antigen molecules. Herein, we combined these two adjuvants and constructed a novel nano-vaccine delivery system by inserting aluminum hydroxide into the surface of a modified MF59 nano-emulsion (AlNEs). A model antigen ovalbumin (OVA) and an immune potentiator CpG were adsorbed on the surface of AlNEs (hereinafter AlNEs-OVA-CpG) through a facile mixing step.
View Article and Find Full Text PDFFront Pharmacol
February 2022
Cancer has posed a major threat to human life and health with a rapidly increasing number of patients. The complexity and refractory of tumors have brought great challenges to tumor treatment. In recent years, nanomaterials and nanotechnology have attracted more attention and greatly improved the efficiency of tumor therapies and significantly prolonged the survival period, whether for traditional tumor treatment methods such as radiotherapy, or emerging methods, such as phototherapy and immunotherapy, sonodynamic therapy, chemodynamic therapy and RNA interference therapeutics.
View Article and Find Full Text PDFParenteral vaccines typically can prime systemic humoral immune response, but with limited effects on cellular and mucosal immunity. Here, a subcutis-to-intestine cascade for navigating nanovaccines to address this limitation is proposed. This five-step cascade includes lymph nodes targeting, uptaken by dendritic cells (DCs), cross-presentation of antigens, increasing CCR9 expression on DCs, and driving CD103 DCs to mesenteric lymph nodes, in short, the LUCID cascade.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
July 2021
Objective: To prepare a chitosan-modified cationic nanoemulsion that could be used to prolong the residence time of nasal vaccines in the nasal cavity and improve the cellular uptake efficiency so as to enhance the immune efficacy of nasal vaccines.
Methods: A nanoemulsion-based vaccine coated with chitosan was prepared, and the particle size, potential, antigen encapsulation efficiency, stability as well as cytotoxicity were examined. The uptake efficiency of vaccine on different cells and the residence time of vaccine in the nasal cavity were measured.
Inducing immune tolerance through repeated administration of self-antigens is a promising strategy for treating rheumatoid arthritis (RA), and current research indicates that coadministration of immunomodulators can further orchestrate the tolerogenic response. However, most of the clinical trials based on tolerance induction have negligible therapeutic effects. Peripheral lymphoid organs play critical roles in immunotherapy.
View Article and Find Full Text PDFAs one of the most important metabolites of vitamin A, all-trans retinoic acid (RA) plays a crucial role in regulating immune responses. RA has been shown to promote the differentiation of naïve T and B cells and perform diverse functions in the presence of different cytokines. RA also induces gut tropic lymphocytes through upregulating the expression of chemokine (C-C motif) receptor 9 (CCR9) and α4β7 integrin.
View Article and Find Full Text PDFBackground: Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health.
Methods: To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues.
Influenza A (H1N1) is a rapidly spreading acute respiratory illness that remains a worldwide burden on public health. To simulate natural infection routes, BALB/C mice were challenged with the H1N1 virus by aerosol and intranasal instillation routes. We compared the weight change and survival of the mice for 14 consecutive days after infection.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are 20-24 nucleotide long non-coding RNAs that play critical regulatory roles during plant development, organ morphogenesis, and cell fate determination and differentiation. In this study, miRNA microarray chips were used to explore the expression profile of ramie miRNAs between the bast of fiber elongation phase and those of cell wall thickening and end wall dissolving phase. There are 150 and 148 credible miRNAs in the bast of fiber elongation phase and cell wall thickening and end wall dissolving phase, respectively.
View Article and Find Full Text PDFA novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.
View Article and Find Full Text PDF