Publications by authors named "Xinxing Ban"

Flexible foam-based sensors have attracted substantial interest due to their high specific surface area, light weight, superior deformability, and ease of manufacture. However, it is still a challenge to integrate multimodal stimuli-responsiveness, high sensitivity, reliable stability, and good biocompatibility into a single foam sensor. To achieve this, a magnetoresistive foam sensor was fabricated by an in situ freezing-polymerization strategy based on the interpenetrating networks of sodium alginate, poly(vinyl alcohol) in conjunction with glycerol, and physical reinforcement of core-shell bidisperse magnetic particles.

View Article and Find Full Text PDF

Flexible nanofiber membranes are compelling materials for the development of functional multi-mode sensors; however, their essential features such as high cross-sensitivity, reliable stability and signal discrimination capability have rarely been realized simultaneously in one sensor. Here, a novel multi-mode sensor with a nanofiber membrane structure based on multiple interpenetrating networks of bidisperse magnetic particles, sodium alginate (SA), chitosan (CHI) in conjunction with polyethylene oxide hydrogels was prepared in a controllable electrospinning technology. Specifically, the morphology distributions of nanofibers could be regulated by the crosslinking degree of the interpenetrating networks and the spinning process parameters.

View Article and Find Full Text PDF

A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.

View Article and Find Full Text PDF