Macrocyclic thermally activated delayed fluorescence (TADF) emitters have been demonstrated to realize high efficiency OLEDs, but the design concept was still confined to rigid π-conjugated structures. In this work, two macrocyclic TADF emitters, Cy-BNFu and CyEn-BNFu, with a flexible alkyl chain as a linker and bulky aromatic hydrocarbon wrapping units were designed and synthesized. The detailed photophysical analysis demonstrates that the flexible linker significantly enhances the solution-processibility and flexibility of the parent TADF core without sacrificing the radiative transition and high PLQY.
View Article and Find Full Text PDFSensing sponge materials with light weight, high elasticity, and electrical sensing properties are in enormous demand in electronic fields, but there is an imminent need to develop a scalable and facile method for the manufacture of the sensing material. Herein, an efficient in situ polymerization and convenient preparation process is reported to manufacture the microporous liquid metal/carbon nanotube-polysulfide rubber (LM/CNT-PSR) sponges with excellent mechanical and electrical properties, based on fluidic LMs and rigid CNTs with unique synergistic effect for sponge composites. Excellent mechanical properties of LM/CNT-PSR sponges, such as low density, excellent elasticity, remarkable mechanical recoverability, and self-healing property, are endowed by the interconnected microporous structure of sponge and flexible polysulfide rubber matrix with disulfide bonds.
View Article and Find Full Text PDFThermally activated delayed fluorescence (TADF) polymer has great potential for the construction of flexible solution-processed organic light-emitting diodes (OLEDs). However, the relationship between polymerization engineering and device functions has rarely been reported. Here, two novel TADF polymers, P-Ph4CzCN and P-Ph5CzCN, with a small energy gap between the first excited singlet and triplet states (Δ; <0.
View Article and Find Full Text PDFg-CN-assisted interface engineering has been developed as an effective method to improve the efficiency and stability of perovskite solar cells (PSCs). However, most of the reported works used g-CN-induced single-interface modification, which is difficult to passivate the bilateral interfaces of the perovskite layer at the same time. In this paper, we fabricated two kinds of CN materials simultaneously (w-CN and y-CN) after the twice calcination of melamine and used them in the bilateral interface modification toward all-inorganic PSCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Although small organics or polymer additives have been introduced to enhance film formation and radiative recombination of perovskite light-emitting diodes (PeLEDs), the exciton utilization and quantum efficiency need further optimization. Here, we introduce a thermal-activated delayed fluorescence (TADF) dendrimer as an additive to enhance the surface coverage and reduce the trap state of the grain boundary. More importantly, the TADF nature of such an additive can retrieve the exciton dissociated from perovskite or trapped by the grain boundary and then transfer the energy back to emissive perovskite through the Förster energy transfer process.
View Article and Find Full Text PDFThe blue thermally activated delay fluorescence (TADF) emitters are highly attractive in the fields of constructing hybrid white organic light-emitting diodes (WOLEDs) due to its high efficiency and color stability. However, few blue TADF emitters can withstand sequential orthogonal solvents, making it impossible to fabricate the fully solution-processed hybrid WOLEDs. Here, two TADF materials, PCz-4CzCN and TPA-4CzCN, were designed and synthesized by equipping the emissive core with nonconjugated bulky units, which can effectively enhance the solvent resistance ability without disturbing the TADF feature.
View Article and Find Full Text PDFHighly efficient solution-processable emitters are greatly desired to develop low-cost organic light-emitting diodes (OLEDs). The recently developed thermally activated delayed fluorescence (TADF) materials are promising candidates, but blue TADF materials compatible with the all-solution-process have still not been achieved. Here, a series of TADF materials, named X-4CzCN, are developed by introducing the bulky units through an unconjugated linker, which realizes high molecular weight to enhance the solvent resistance ability without disturbing the blue TADF feature.
View Article and Find Full Text PDFDeveloping a solution-processible blue thermally activated delayed fluorescence (TADF) emitter for hybrid white organic light emitting diodes (WOLEDs) is still a challenge. In this work, two TADF blue emitters are designed and synthesized to explore a common strategy to qualify the small molecular TADF material as a solution-processible blue host. Systematic studies find that the molecular encapsulation by introducing unconjugated carbazoles as steric shields not only keeps the intrinsic TADF feature unchanged, but also effectively suppress the intermolecular interaction induced exciton quenching, which makes the material more efficient for solution-processing.
View Article and Find Full Text PDFActualizing high-efficiency thermally activated delayed fluorescent (TADF) organic light-emitting diodes (OLEDs) with fully wet processes is of great significance to the development of purely organic electroluminescence and the application of large-area OLED displays. Herein, new strategies are proposed to develop the TADF dendrimers with tunable colors by adjusting the way of linking branches to the core and the numbers of peripheral branches. Due to an energy gradient and efficient exciton utilization in the core-dendron system, the solution-processed OLEDs with the four dendrimers 5CzBN-O-Cz, 5CzBN-O-2Cz, 5CzBN-Cz, and 5CzBN-2Cz all give rise to low turn-on voltages and great device efficiency.
View Article and Find Full Text PDFFabrication of highly efficient all thermally activated delayed fluorescence (TADF) white organic light-emitting diodes (WOLEDs) through solution-process still remains a big challenge. Here, two encapsulated TADF molecules with a small singlet-triplet energy gap (Δ E) and high photoluminescence quantum yield (PLQY) were designed and synthesized as yellow emitters for solution-processed WOLEDs. The high current, power, and external quantum efficiencies of 41.
View Article and Find Full Text PDFThe molecular aggregation and exciton-polaron interaction of the host-guest system were successfully restricted by efficient molecular encapsulation. The solution-processed blue and green TADF OLEDs have been realized with external quantum efficiencies above 23% by employing the encapsulated TADF host and guest as emission layers.
View Article and Find Full Text PDFHere, we conveniently designed and synthesized a self-host thermally activated delayed fluorescence (TADF) emitter, which can not only form a uniform thin film through wet-process, but also allow the subsequently deposition of electron transporting layer (ETL) by orthogonal solvent. By using this self-host material as emitter, the all-solution-processed multilayer TADF organic light emitting diodes (OLEDs) was successfully fabricated. The maximum current, power and external quantum efficiencies of this nondoped device are 46.
View Article and Find Full Text PDFA self-host thermally activated delayed fluorescence (TADF) dendrimer POCz-DPS for solution-processed nondoped blue organic light-emitting diodes (OLEDs) was designed and synthesized, in which the bipolar phosphine oxide carbazole moiety was introduced by alkyl chain to ensure balanced charge transfer. The investigation of physical properties showed that the bipolar dendrons not only improve the morphological stability but also restrain the concentration quenching effect of the TADF emissive core. The spin-coated OLEDs featuring POCz-DPS as the host-free blue emitter achieved the highest external quantum efficiency (7.
View Article and Find Full Text PDFSelf-host thermally activated delayed fluorescence (TADF) materials have recently been identified as effective emitters for solution-processed nondoped organic light-emitting diodes (OLEDs). However, except for the carbazole unit, few novel dendrons have been developed to build self-host TADF emitters. This study reports two self-host blue materials, tbCz-SO and poCz-SO, with the same TADF emissive core and different dendrons.
View Article and Find Full Text PDFA benzimidazole/phosphine oxide hybrid 1,3,5-tris(1-(4-(diphenylphosphoryl)phenyl)-1H-benzo[d]imidazol-2-yl)benzene (TPOB) was newly designed and synthesized as the electron-transporting component to form an exciplex-type host with the conventional hole-transporting material tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Because of the enhanced triplet energy and electron affinity of TPOB, the energy leakage from exciplex-state to the constituting molecule was eliminated. Using energy transfer from exciplex-state, solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) achieved an extremely low turn-on voltage of 2.
View Article and Find Full Text PDFThree solution-processable exciplex-type host materials were successfully designed and characterized by equal molar blending hole transporting molecules with a newly synthesized electron transporting material, which possesses high thermal stability and good film-forming ability through a spin-coating technique. The excited-state dynamics and the structure-property relationships were systematically investigated. By gradually deepening the highest occupied molecular orbital (HOMO) level of electron-donating components, the triplet energy of exciplex hosts were increased from 2.
View Article and Find Full Text PDFTwo soluble bipolar host materials (mCP-BPBI and CP-QPBI), comprising different proportions of hole-transporting carbazole and electron-transporting benzimidazole, were synthesized. Their thermal, physical, and electrochemical properties were characterized. The designated bulky star-shaped structures efficiently suppress the direct intramolecular interaction between the donor and acceptor subunits to give high triplet energies.
View Article and Find Full Text PDFAn ideal host material with high triplet energy, suitable HOMO energy level, excellent thermal and electrochemical stability, and bipolar charge carrier transport ability was synthesized. A high external quantum efficiency of 13.7% and a luminance efficiency of 48.
View Article and Find Full Text PDFA novel alcohol-soluble electron-transport material was designed and synthesized. This material not only possesses a high triplet energy and a low HOMO level but also exhibits excellent electron-transport properties and good film-forming ability. Efficient fully solution-processed multilayer white electrophosphorescent devices have been fabricated by using this alcohol-processable material as an orthogonal electron-transport layer.
View Article and Find Full Text PDF