UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a.
View Article and Find Full Text PDFSensing of environmental challenges, such as mechanical injury, by a single plant tissue results in the activation of systemic signaling, which attunes the plant's physiology and morphology for better survival and reproduction. As key signals, both calcium ions (Ca ) and hydrogen peroxide (H O ) interplay with each other to mediate plant systemic signaling. However, the mechanisms underlying Ca -H O crosstalk are not fully revealed.
View Article and Find Full Text PDFHuanglongbing (HLB), spread by the Asian citrus psyllid (ACP), is a widespread, devastating disease that causes significant losses in citrus production. Therefore, controlling the ACP infestation and HLB infection is very important for citrus production. The aim of our study was to identify any citrus volatile which could be used as a repellent or less attractant towards ACP, and to envisage the potential of this strategy to control HLB spread.
View Article and Find Full Text PDFPhotorespiration begins with the oxygenation reaction catalyzed by Rubisco and is the second highest metabolic flux in plants after photosynthesis. Although the core biochemical pathway of photorespiration has been well characterized, little is known about the underlying regulatory mechanisms. Some rate-limiting regulation of photorespiration has been suggested to occur at both the transcriptional and posttranslational levels, but experimental evidence is scarce.
View Article and Find Full Text PDFIncreasing concentration of CO has significant impacts on many biological processes in plants, and its impact is closely associated with changes in the ratio of photosynthesis to photorespiration. Studies have reported that high CO can promote carbon fixing and alleviate plant oxidative damage in response to environmental stresses. However, the effect of high CO on fatty acid (FA) metabolism and cellular redox balance in FA-deficient plants is rarely reported.
View Article and Find Full Text PDFThe homeostasis of hydrogen peroxide (H O ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H O levels in plants.
View Article and Find Full Text PDFEndoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal.
View Article and Find Full Text PDFImproving the grain yield of rice is a central goal of basic and applied scientific research. Here, we identified an anion transporter, OsAT1, localized in the endoplasmic reticulum and Golgi. OsAT1 is highly expressed in flag, stem, and sheath as monitored using qRT-PCR and pOsAT1::GUS.
View Article and Find Full Text PDFModerate leaf rolling helps to form the ideotype of rice. In this study, six independent OsRUS1-GFP overexpression (OsRUS1-OX) transgenic rice lines with rapid and dynamic leaf rolling phenotype in response to sunlight were constructed. However, the mechanism is unknown.
View Article and Find Full Text PDFBackground: Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for HO production in plants. Catalase (CAT)-dependent HO decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the HO production in IAA regulation.
View Article and Find Full Text PDFExposure to ultraviolet B radiation (UV-B) stress can have serious effects on the growth and development of plants. Germin-like proteins (GLPs) may be involved in different abiotic and biotic stress responses in different plants, but little is known about the role of GLPs in UV-B stress response and acclimation in plants. In the present study, knockout of GLP 8-14 (OsGLP1) using the CRISPR/Cas9 system resulted in mutant rice (Oryza sativa L.
View Article and Find Full Text PDFThe photorespiratory pathway is highly compartmentalized. As such, metabolite shuttles between organelles are critical to ensure efficient photorespiratory carbon flux. Arabidopsis plastidic glycolate/glycerate translocator 1 (PLGG1) has been reported as a key chloroplastic glycolate/glycerate transporter.
View Article and Find Full Text PDFSeveral photorespiratory bypasses have been introduced into plants and shown to improve photosynthesis by increasing chloroplastic CO concentrations or optimizing energy balance. We recently reported that an engineered GOC bypass could increase photosynthesis and productivity in rice. However, the grain yield of GOC plants was unstable, fluctuating in different cultivation seasons because of varying seed setting rates.
View Article and Find Full Text PDFBackground: The glyoxylate reductase (GR) multigene family has been described in various plant species, their isoforms show different biochemical features in plants. However, few studies have addressed the biological roles of GR isozymes, especially for rice.
Results: Here, we report a detailed analysis of the enzymatic properties and physiological roles of OsGR1 and OsGR2 in rice.
Banana (, AAA group) is a representative climacteric fruit with essential nutrients and pleasant flavors. Control of its ripening determines both the fruit quality and the shelf life. NAC (NAM, ATAF, CUC2) proteins, as one of the largest superfamilies of transcription factors, play crucial roles in various functions, especially developmental processes.
View Article and Find Full Text PDFWD40 repeat-containing proteins (WD40 proteins) serve as versatile scaffolds for protein-protein interactions, modulating a variety of cellular processes such as plant stress and hormone responses. Here we report the identification of a WD40 protein, XIW1 (for XPO1-interacting WD40 protein 1), which positively regulates the abscisic acid (ABA) response in Arabidopsis. XIW1 is located in the cytoplasm and nucleus.
View Article and Find Full Text PDFOsIAAGLU could catalyze the reaction of IAA with glucose to generate IAA-glucose. Overexpression of OsIAAGLU in rice resulted in altered rice shoot architecture and root gravitropism. The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development.
View Article and Find Full Text PDFBackground: NCA1 (NO CATALASE ACTIVITY 1) was recently identified in Arabidopsis as a chaperone protein to regulate catalase (CAT) activity through maintaining the folding of CAT. The gene exists mainly in higher plants; some plants, such as Arabidopsis, contain only one NCA1 gene, whereas some others such as rice harbor two copies. It is not yet understood whether and how both isoforms have functioned to regulate CAT activity in those two-copy-containing plant species.
View Article and Find Full Text PDFOver the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable increases in photosynthesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO catalyzed by three rice-self-originating enzymes, i.
View Article and Find Full Text PDFPhotorespiration is an essential process for plant photosynthesis, development and growth in aerobic conditions. Recent studies have shown that photorespiration is an open system integrated with the plant primary metabolism network and intracellular redox systems, though the mechanisms of regulating photorespiration are far from clear. Through a forward genetic method, we identified a photorespiratory mutant pr1 (photorespiratory related 1), which produced a chlorotic and smaller photorespiratory growth phenotype with decreased chlorophyll content and accumulation of glycine and serine in ambient air.
View Article and Find Full Text PDFBackground: Although decreased protein expressions have been observed in NOA1 (Nitric Oxide Associated protein 1) deficient plants, the molecular mechanisms of how NOA1 regulates protein metabolism remain poorly understood. In this study, we have used a global comparative proteomic approach for both OsNOA1 suppression and overexpression transgenic lines under two different temperatures, in combination with physiological and biochemical analyses to explore the regulatory mechanisms of OsNOA1 in rice.
Results: In OsNOA1-silenced or highly overexpressed rice, considerably different expression patterns of both chlorophyll and Rubisco as well as distinct phenotypes were observed between the growth temperatures at 22 °C and 30 °C.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) technology provides an efficient tool for editing the genomes of plants, animals and microorganisms. Glutamate:glyoxylate aminotransferase 1 (GGAT1) is a key enzyme in the photorespiration pathway; however, its regulation mechanism is largely unknown. Given that EMS-mutagenized ggat1 (Col-0 background) M2 pools have been generated, ggat1 (Ler background) should be very useful in the positional cloning of suppressor and/or enhancer genes of GGAT1.
View Article and Find Full Text PDFBackground: Glycolate oxidase (GLO) is a key enzyme for photorespiration in plants. There are four GLO genes encoding and forming different isozymes in rice, but their functional differences are not well understood. In this study, enzymatic and physiological characteristics of the GLO isozymes were comparatively analyzed.
View Article and Find Full Text PDFVarious chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.
View Article and Find Full Text PDF