Excessive levels of NO can result in multiple eco-environmental issues due to potential toxicity, especially in coastal areas. Accurate source tracing is crucial for effective pollutant control and policy development. Bayesian models have been widely employed to trace NO sources, while limited studies have utilized optimized Bayesian models for NO tracing in the coastal rivers.
View Article and Find Full Text PDFSustainable strategies are essential for zinc (Zn) biofortification and cadmium (Cd) reduction in staple food crops. Herein, we evaluated the phytotoxicity of Glyzinc under foliar and root application (FA&RA) in a lab-scale experiment, and then investigated its Zn efficiency and Cd reduction through foliar application on wheat (Triticum aestivum L.) under field conditions.
View Article and Find Full Text PDFMultiple sources of microplastics (MPs) in farmland could result in the changing of microbial community and the plant growth. Most studies of MPs in agricultural system have focused on the effects of single types of MPs on growth of plants, while neglect interactions between multiple types of MPs. In this study a pot-experiment was conducted to investigate the effects of multiple types of MPs, including polystyrene beads: M1, 5 μm, M2, 70 nm and degradable mulching film (DMF) fragments on growth of wheat seedlings and associated rhizosphere microbial community.
View Article and Find Full Text PDFSci Total Environ
April 2022
Microplastics (MPs) and nanoplastics (NPs) have been widely studied, mostly focusing on the methods of separation, detection, and adsorption or the ecological effects in aquatic ecosystems. When different sources and types of MPs/NPs enter the soil, they can affect the biogeochemical cycle in terms of the direct impacts on soil physicochemical properties and soil organisms, and the indirect impact on soil biota through changes in soil material cycling. To date, a few studies have focused on the effects of MPs/NPs on soil ecosystems, including soil properties, microbial communities, soil fauna, and plants, as well as the potential or affirmed correlations among them.
View Article and Find Full Text PDFMicroplastics (MPs) have been attracting wide attention. Biochar (BC) application could improve the soil quality in the contaminated soil. Currently, most studies focused on the effect of MPs or BC on the soil properties and microbial community, while they neglected the combined effects.
View Article and Find Full Text PDFThe effect of modified biochar on the greenhouse gas emission in soil is not clear until now. In this study, biochar (BC) was modified by phosphoric acid (P) and further combined with nano-zero-valent iron (nZVI) to form nZVI-P-BC composite. The P modified biochar could significantly increase the available phosphorus in soil.
View Article and Find Full Text PDFThis article reports on silver nanoparticles (AgNPs) that were green-synthesized by using (Thunb.) leaf extract and their use for the catalytic degradation of reactive dyes. The properties of biogenic AgNPs were characterized using UV-vis absorption spectroscopy, field emission scanning electron microscope (FESEM), X-ray powder diffraction (XRD), transmission electron microscope (TEM), Fourier transforming infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) analysis.
View Article and Find Full Text PDF