To overcome the shuttle effect in lithium-sulfur (Li-S) batteries, an sp/sp2 hybridized all-carbon interlayer by coating graphene (Gra) and hydrogen-substituted graphdiyne (HsGDY) with a specific surface area as high as 2184 m2 g-1 on a cathode is designed and prepared. The two-dimensional network and rich pore structure of HsGDY can enable the fast physical adsorption of lithium polysulfides (LiPSs). In situ Raman spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) combined with density functional theory (DFT) computations confirm that the acetylenic bonds in HsGDY can trap the Li+ of LiPSs owing to the strong adsorption of Li+ by acetylenic active sites.
View Article and Find Full Text PDFThe sluggish reaction kinetics at the cathode/electrolyte interface of lithium-sulfur (Li-S) batteries limits their commercialization. Herein, we show that a dual-regulation system of iron phthalocyanine (FePc) and octafluoronaphthalene (OFN) decorated on graphene (Gh), denoted as Gh/FePc+OFN, accelerates the interfacial reaction kinetics of lithium polysulfides (LiPSs). Multiple spectroscopy techniques and X-ray photoelectron spectroscopy combined with density functional theory calculations demonstrate that FePc acts as an efficient anchor and scissor for the LiPSs through Fe···S coordination, mainly facilitating their liquid-liquid transformation, whereas OFN enables Li-bond interaction with the LiPSs, accelerating the kinetics of the liquid-solid nucleation and growth of LiS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
The complicated reactions at the cathode-electrolyte interface in Li-S batteries are a large barrier for their successful commercialization. Herein, we developed a molecular design strategy and employed three small molecules acting as interfacial mediators to the cathodes of Li-S batteries. The theoretical calculation results show that the incorporation of tris(4-fluorophenyl)phosphine (TFPP) has a strong binding performance.
View Article and Find Full Text PDFIt is of great importance to develop a 3D scaffold that matches the bone in aspects of element and structure. In order to achieve this aim, the sugarcane aerogel derived borate glasses scaffolds were developed through bioglass modification. Sol-gel-derived borate glasses of the 30-5B (Si/B ratio) have been prepared to produce 3D borate scaffolds with sugarcane morphologies.
View Article and Find Full Text PDF