α-halo alkylboronic esters, acting as ambiphilic synthons, play a pivotal role as versatile intermediates in fields like pharmaceutical science and organic chemistry. The sequential transformation of carbon-boron and carbon-halogen bonds into a broad range of carbon-X bonds allows for programmable bond formation, facilitating the incorporation of multiple substituents at a single position and streamlining the synthesis of complex molecules. Nevertheless, the synthetic potential of these compounds is constrained by limited reaction patterns.
View Article and Find Full Text PDFRational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods.
View Article and Find Full Text PDFCeO assemblies with various morphologies were synthesized a facile hydrothermal method using short-chain dicarboxylic acids as the only added agent. It is demonstrated that the morphology of CeO assemblies depends on the chain-length of the dicarboxylic acids. The reaction with propanedioic acid (PA) results in durian-like ceria assemblies.
View Article and Find Full Text PDFPhotocatalytic reduction of CO to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO .
View Article and Find Full Text PDFCatalysts are urgently needed to remove the residual CO in hydrogen feeds through selective oxidation for large-scale applications of hydrogen proton exchange membrane fuel cells. We herein propose a new methodology that anchors high concentration oxygen vacancies at interface by designing a CeO2-x/Cu hybrid catalyst with enhanced preferential CO oxidation activity. This hybrid catalyst, with more than 6.
View Article and Find Full Text PDFMulticomponent spinel metal-oxide assembled mesoporous microspheres, promising anode materials for Li-ion batteries with superior electrochemical performance, are usually obtained using different kinds of precursors followed by high-temperature post-treatments. Nevertheless, high-temperature calcinations often cause primary particles to aggregate and coarsen, which may damage the assembled microsphere architectures, leading to deterioration of electrochemical performance. In this work, binary spinel metal-oxide assembled mesoporous microspheres MnCo2O4 were fabricated by one-step low-temperature solvothermal method through handily utilizing the redox reaction of nitrate and ethanol.
View Article and Find Full Text PDFChem Commun (Camb)
December 2013
A novel heterostructure was first synthesized by directly depositing photocatalytic inert ZnO2 onto facet {201} of brookite nanorods. The heterostructure thus obtained was found to show a superior photocatalytic activity under UV-light irradiation. The exceptional photocatalytic performance was due to the band-structure match between ZnO2 and brookite as well as synergic charge accumulation by different facets of the brookite nanorods.
View Article and Find Full Text PDFThe brookite phase of TiO(2) is hardly prepared and rarely studied in comparison with the common anatase and rutile phases. In addition, there exist immense controversies over the cognition of the light-induced liveliness of this material. Here, a novel, low-basicity solution chemistry method was first used to prepare homogeneous high-quality brookite TiO(2) single-crystalline nanosheets surrounded with four {210}, two {101}, and two {201} facets.
View Article and Find Full Text PDF