Covalent adaptable liquid crystal networks (CALCNs) are highly potential actuating materials due to their actuation properties and shape reprogrammability. Given the importance of network crosslinking state in a CALCN actuator, we sought an all-in-one strategy to probe and visualize its dynamic network while ensuring actuation and reprogramming. Here, tetraphenylethylene derivatives were incorporated into liquid crystal networks via the Diels-Alder (DA) reaction, acting simultaneously as reversible crosslinkers and aggregation-induced emission (AIE) fluorescent probes.
View Article and Find Full Text PDFSoft actuators based on liquid crystal networks (LCNs) have aroused great scientific interest for use as stimuli-controlled shape-changing and moving components for robotic devices due to their fast, large, programmable and solvent-free actuation responses. Recently, various LCN actuators have been implemented in soft robotics using stimulus sources such as heat, light, humidity and chemical reactions. Among them, electrically driven LCN actuators allow easy modulation and programming of the input electrical signals (amplitude, phase, and frequency) as well as stimulation throughout the volume, rendering them promising actuators for practical applications.
View Article and Find Full Text PDFRoot border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three-dimensional structures and macromolecular compositions of these Golgi stacks, we examined high-pressure frozen/freeze-substituted alfalfa root cap cells with electron microscopy/tomography.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2016
Zhonghua Yi Xue Za Zhi
January 2015
Zhonghua Yi Xue Za Zhi
January 2014
Zhonghua Yi Xue Za Zhi
March 2008
Zhonghua Yi Xue Za Zhi
January 2007