Publications by authors named "Xinsheng Ju"

The CD300 glycoproteins are a family of related leucocyte surface molecules that regulate the immune response via their paired triggering and inhibitory receptors. Here we studied CD300f, an apoptotic cell receptor, and how it modulates the function of human monocytes and macrophages. We showed that CD300f signalling by crosslinking with anti-CD300f mAb (DCR-2) suppressed monocytes causing upregulation of the inhibitory molecule, CD274 (PD-L1) and their inhibition of T cell proliferation.

View Article and Find Full Text PDF

Antibodies targeting the activation marker CD83 can achieve immune suppression by targeting antigen-presenting mature dendritic cells (DC). This study investigated the immunosuppressive mechanisms of anti-CD83 antibody treatment in mice and tested its efficacy in a model of autoimmune rheumatoid arthritis. A rat anti-mouse CD83 IgG2a monoclonal antibody, DCR-5, was developed and functionally tested in mixed leukocyte reactions, demonstrating depletion of CD83 conventional (c)DC, induction of regulatory DC (DCreg), and suppression of allogeneic T cell proliferation.

View Article and Find Full Text PDF

Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment.

View Article and Find Full Text PDF

Objectives: Effective antibody-drug conjugates (ADCs) provide potent targeted cancer therapies. CD83 is expressed on activated immune cells including B cells and is a therapeutic target for Hodgkin lymphoma. Our objective was to determine CD83 expression on non-Hodgkin lymphoma (NHL) and its therapeutic potential to treat mantle cell lymphoma (MCL) which is currently an incurable NHL.

View Article and Find Full Text PDF

Myeloid lineage cells present in human peripheral blood include dendritic cells (DC) and monocytes. The DC are identified phenotypically as HLA-DR cells that lack major cell surface lineage markers for T cells (CD3), B cells (CD19, CD20), NK cells (CD56), red blood cells (CD235a), hematopoietic stem cells (CD34), and Mo that express CD14. Both DC and Mo can be phenotypically divided into subsets.

View Article and Find Full Text PDF

CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis.

View Article and Find Full Text PDF

Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies.

View Article and Find Full Text PDF

CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function.

View Article and Find Full Text PDF

HLDA10 is the Tenth Human Leukocyte Differentiation Antigen (HLDA) Workshop. The HLDA Workshops provide a mechanism to allocate cluster of differentiation (CD) nomenclature by engaging in interlaboratory studies. As the host laboratory, we invited researchers from national and international academic and commercial institutions to submit monoclonal antibodies (mAbs) to human leukocyte surface membrane molecules, particularly those that recognised molecules on human myeloid cell populations and dendritic cells (DCs).

View Article and Find Full Text PDF

We established a humanized mouse model incorporating FLT3-ligand (FLT3-L) administration after hematopoietic cell reconstitution to investigate expansion, phenotype, and function of human dendritic cells (DC). FLT3-L increased numbers of human CD141(+) DC, CD1c(+) DC, and, to a lesser extent, plasmacytoid DC (pDC) in the blood, spleen, and bone marrow of humanized mice. CD1c(+) DC and CD141(+) DC subsets were expanded to a similar degree in blood and spleen, with a bias toward expansion of the CD1c(+) DC subset in the bone marrow.

View Article and Find Full Text PDF

Dendritic cells (DC) are a heterogeneous population of leucocytes which play a key role in initiating and modulating immune responses. The human CD300 family consists of six immunoregulatory leucocyte membrane molecules that regulate cellular activity including differentiation, viability, cytokine and chemokine secretion, phagocytosis and chemotaxis. Recent work has identified polar lipids as probable ligands for these molecules in keeping with the known evolutionary conservation of this family.

View Article and Find Full Text PDF

Human blood myeloid DCs can be subdivided into CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) subsets that display unique gene expression profiles, suggesting specialized functions. CD1c(+) DCs express TLR4 while CD141(+) DCs do not, thus predicting that these two subsets have differential capacities to respond to Escherichia coli. We isolated highly purified CD1c(+) and CD141(+) DCs and compared them to in vitro generated monocyte-derived DCs (MoDCs) following stimulation with whole E.

View Article and Find Full Text PDF

Dendritic cells (DC) are a heterogeneous population of bone marrow derived leucocytes that are essential in the initiation of primary T lymphocyte responses. DC are identified as Lineage negative, HLA-DR(+) blood cells that can be further subdivided by CD11c to distinguish CD11c(+) DC and the CD11c(-) plasmacytoid DC. Plasmacytoid DC are the primary IFNα producing cells and express CD303, CD304 and CD123.

View Article and Find Full Text PDF

The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141+ DC subset. CD141+ DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis.

View Article and Find Full Text PDF

Dendritic cells (DC) are critical to the induction and regulation of the innate and adaptive immune responses. They have been implicated in the pathogenesis of many autoimmune and chronic inflammatory diseases as well as contributing to the development of tumours by their lack of appropriate function. As such, understanding human DC biology provides the insight needed to develop applications for their use in the treatment of diseases.

View Article and Find Full Text PDF

The CD300 glycoproteins are a family of related leucocyte surface molecules that modulate a diverse array of cell processes via their paired triggering and inhibitory receptor functions. All family members have a single Ig-V like domain and they share a common evolutionary pathway. At least one member of the family has undergone significant positive selection (ranked second in the top 50) indicating a need to maintain some crucial function.

View Article and Find Full Text PDF

The CD300 glycoproteins are a family of cell surface molecules that modulate a diverse array of cell processes via their paired triggering and inhibitory receptor functions. Family members share a common evolutionary pathway and at least one member of the family has undergone significant positive selection, indicating their crucial value to the host. This review clarifies the occasionally confusing usage of nomenclature for the CD300 family and summarizes our current understanding of their genomics, expression and function.

View Article and Find Full Text PDF

Activation of human plasmacytoid dendritic cells (pDCs) with ligands for Toll-like receptors (TLRs) 7 and 9 induces the secretion of type I interferons and other inflammatory cytokines as well as pDC differentiation. Transcripts for 2 members of the CD300 gene family, CD300a and CD300c, were identified on pDCs during gene expression studies to identify new immunoregulatory molecules on pDCs. We therefore investigated the expression of CD300a and CD300c and their potential regulation of pDC function.

View Article and Find Full Text PDF

The CD300c (CMRF-35A) and CD300a (CMRF-35H) molecules are leukocyte surface proteins that are part of a larger family of immunoregulatory molecules encoded by a gene complex on human chromosome 17. The CMRF-35 monoclonal antibody binds to an epitope common to both molecules, expressed on most human leukocyte populations, apart from B lymphocytes and a subpopulation of CD4(+) and CD8(+) T lymphocytes. We describe the CMRF-35(pos) and CMRF-35(-) fractions of CD4(+) T lymphocytes.

View Article and Find Full Text PDF

Dendritic cells are professional antigen presenting cells and central for establishing and maintaining immunity and immunological tolerance. They develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Dendritic cell development and function are regulated by specific cytokines, including transforming growth factor type beta1 (TGF-beta1).

View Article and Find Full Text PDF

Langerhans cells (LC) represent the cutaneous contingent of dendritic cells (DC). Their development critically depends on transforming growth factor beta1 (TGF-beta1) as demonstrated by analysis of TGF-beta1(-/-) mice, which lack LC. Here we used a two-step culture system and transcriptional profiling by DNA microarrays to search for TGF-beta1 target genes in DC.

View Article and Find Full Text PDF

The role of neutrophils in the immune response has long been regarded as mainly phagocytic, but recent publications have indicated the production of several cytokines by polymorphonuclear leucocytes (PMN). The results of the individual reports, however, vary considerably. In this study, we established a cytokine profile of pure human neutrophils and demonstrated that minor contamination of peripheral blood mononuclear cells (PBMCs) in PMN preparations can lead to false-positive results.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is able to establish latency in infected individuals. In order to characterize potential new immune-escape mechanisms, mature dendritic cells (DCs) were infected with HSV-1 and total cellular RNA was isolated from infected and mock-infected populations at different time points. RNA profiling on Affymetrix Human Genome U133A arrays demonstrated a dramatic downregulation of the migration-mediating surface molecules CCR7 and CXCR4, an observation that was further confirmed by RT-PCR and fluorescence-activated cell sorting analyses.

View Article and Find Full Text PDF

A large membrane proteinase 3 (mPR3)-positive neutrophil subset (mPR3high) is a risk for Wegener's granulomatosis (WG). The relationship between mPR3 expression and clinical manifestations was investigated in 81 WG patients and mPR3 expression was studied in CD34+ stem cell-derived human neutrophils. The mPR3high neutrophil percentage correlated with renal function, anemia, and albumin at the time of presentation.

View Article and Find Full Text PDF

Dendritic cells (DC) are professional antigen presenting cells that play a pivotal role in initiating primary immune responses and have been implicated in determining the balance between immunity and tolerance. DC originate from hematopoietic stem cells in bone marrow and different DC subsets have been identified according to their phenotype, function, activation state and location. Gene expression analysis of DC by DNA microarrays represents a systemic approach to the underlying complexity of DC biology and is expected to provide important clues to the application of DC in the clinic.

View Article and Find Full Text PDF