Individual muscle segmentation is the process of partitioning medical images into regions representing each muscle. It can be used to isolate spatially structured quantitative muscle characteristics, such as volume, geometry, and the level of fat infiltration. These features are pivotal to measuring the state of muscle functional health and in tracking the response of the body to musculoskeletal and neuromusculoskeletal disorders.
View Article and Find Full Text PDFBackground: Abnormal prenatal hip joint loading can lead to compromised hip joint function. Early intervention is crucial for favorable outcomes.
Purpose: This study investigates the impact of treatment timing (initiation and duration) on cartilage growth and ossification in the proximal femur of infants with developmental dysplasia of the hip, a condition affecting newborns.
Unlabelled: To conduct cost-utility analyses for Computed Tomography To Strength (CT2S), a novel osteoporosis screening service, compared with dual-energy X-ray absorptiometry (DXA), treat all without screening, and no screening methods for Dutch postmenopausal women referred to fracture liaison service (FLS). CT2S uses CT scans to generate femur models and simulate sideways fall scenarios for bone strength assessment. Early health technology assessment (HTA) was adopted to evaluate CT2S as a novel osteoporosis screening tool for secondary fracture prevention.
View Article and Find Full Text PDFMethods Mol Biol
September 2023
Aging is associated with a greater risk of muscle and bone disorders such as sarcopenia and osteoporosis. These conditions substantially affect one's mobility and quality of life. In the past, muscles and bones are often studied separately using generic or scaled information that are not personal-specific, nor are they representative of the large variations seen in the elderly population.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
May 2022
The constant dark induction (DD) causes lipid degeneration and nonalcoholic fatty liver disease (NAFLD) in zebrafish, which might be closely related to the imbalance of gut microbiota and require in-depth study. In this study, a total of 144 zebrafish were divided into four groups, including the control group, Yihe-Tang group, constant dark group, and constant dark + Yihe-Tang group, and were treated with constant darkness (except control and Yihe-Tang groups) for 21 days. The bodyweights of zebrafish were recorded after 8 d, 15 d, and 22 d.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
June 2021
Logistic regression classification (LRC) is widely used to develop models to predict the risk of femoral fracture. LRC models based on areal bone mineral density (aBMD) alone are poor, with area under the receiver operator curve (AUROC) scores reported to be as low as 0.63.
View Article and Find Full Text PDFRecently, coupled musculoskeletal-finite element modelling approaches have emerged as a way to investigate femoral neck loading during various daily activities. Combining personalised gait data with finite element models will not only allow us to study changes in motion/movement, but also their effects on critical internal structures, such as the femur. However, previous studies have been hampered by the small sample size and the lack of fully personalised data in order to construct the coupled model.
View Article and Find Full Text PDFIntroduction And Hypothesis: Vaginal childbirth is associated with pelvic floor muscle (PFM) damage in a third of women. The biomechanics prediction, detection and management of PFM damage remain poorly understood. We sought in this pilot study to determine whether quantifying PFM stiffness postnatally by vaginal elastometry, in women attending a perineal trauma clinic (PTC) within 6 months of obstetric anal sphincter injury, correlates with their antecedent labour characteristics, pelvic floor muscle damage, or urinary/bowel/sexual symptoms, to inform future definitive prospective studies.
View Article and Find Full Text PDFBackground: Osteoporotic proximal femoral fractures associated to falls are a major health burden in the ageing society. Recently, bone strength estimated by finite element models emerged as a feasible alternative to areal bone mineral density as a predictor of fracture risk. However, previous studies showed that the accuracy of patients' classification under their risk of fracture using finite element strength when simulating posterolateral falls is only marginally better than that of areal bone mineral density.
View Article and Find Full Text PDFThe original version "Are CT-Based Finite Element Model Predictions of Femoral Bone Strengthening Clinically Useful?"
View Article and Find Full Text PDFPurpose Of Review: This study reviews the available literature to compare the accuracy of areal bone mineral density derived from dual X-ray absorptiometry (DXA-aBMD) and of subject-specific finite element models derived from quantitative computed tomography (QCT-SSFE) in predicting bone strength measured experimentally on cadaver bones, as well as their clinical accuracy both in terms of discrimination and prediction. Based on this information, some basic cost-effectiveness calculations are performed to explore the use of QCT-SSFE instead of DXA-aBMD in (a) clinical studies with femoral strength as endpoint, (b) predictor of the risk of hip fracture in low bone mass patients.
Recent Findings: Recent improvements involving the use of smooth-boundary meshes, better anatomical referencing for proximal-only scans, multiple side-fall directions, and refined boundary conditions increase the predictive accuracy of QCT-SSFE.
Biomech Model Mechanobiol
August 2018
Fractures of bone account 25% of all paediatric injuries (Cooper et al. in J Bone Miner Res 19:1976-1981, 2004. https://doi.
View Article and Find Full Text PDFVaginal delivery is the primary cause of levator ani muscle injury, which is in turn the leading factor contributing to pelvic floor disorders including pelvic organ prolapse and urinary stress incontinence. Existing biomechanical models of childbirth have provided some understanding of pelvic floor function during delivery and have helped in the investigation of preventative strategies. The modeling frameworks for childbirth simulation are described with emphasis on (1) the recent advances in medical imaging quality and computational power; (2) improvements in the anatomical representation of the pelvic floor and fetal head; (3) more realistic boundary conditions for delivery; and (4) mechanical properties determined from experiments.
View Article and Find Full Text PDFThere have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate.
View Article and Find Full Text PDFThe mechanisms of fracture in infants and toddlers are not well understood. There have been very few studies on the mechanical properties of pediatric bones and their responses under fracture loading. A better understanding of fracture mechanisms in children will help elucidate both accidental and non-accidental injuries, as well as bone fragility diseases.
View Article and Find Full Text PDFThe complex geometry of cancellous bone tissue makes it difficult to generate finite element (FE) models. Only a few studies investigated the convergence behavior at the tissue scale using Cartesian meshes. However, these studies were not conducted according to an ideal patch test and the postelastic convergence behavior was not reported.
View Article and Find Full Text PDFIn this study, we investigated whether the meanings of radicals are involved in reading ideogrammic compounds in a spatial Stroop task. We found spatial Stroop effects of similar size for the simple characters [symbol: see text] ("up") and [symbol: see text] ("down") and for the complex characters [symbol: see text] ("nervous") and [symbol: see text] ("nervous"), which are ideogrammic compounds containing a radical [symbol: see text] or [symbol: see text], in Experiments 1 and 2. In Experiment 3, the spatial Stroop effects were also similar for the simple characters [symbol: see text] ("east") and [symbol: see text] ("west") and for the complex characters [symbol: see text] ("state") and [symbol: see text] ("spray"), which contain [symbol: see text] and [symbol: see text] as radicals.
View Article and Find Full Text PDFThe role of the pelvic floor soft tissues during the second stage of labor, particularly the levator ani muscle, has attracted much interest recently. It has been postulated that the passage of the fetal head through the pelvis may cause excessive stretching of the levator ani muscle, which may lead to pelvic floor dysfunction and pelvic organ prolapse later in life. In order to study the complex biomechanical interactions between the levator ani muscle and the fetal head during the second stage of labor, finite element models have been developed for quantitative analysis of this process.
View Article and Find Full Text PDFWiley Interdiscip Rev Syst Biol Med
December 2010
The process of childbirth and the mechanisms of labor have been studied for over a century, beginning with simple measurements of fetal skull and maternal pelvis dimensions. More recently, X-rays, ultrasound, and magnetic resonance imaging have been used to try and quantify the biomechanics of labor. With the development of computational technologies, biomechanical models have emerged as a quantitative analysis tool for modeling childbirth.
View Article and Find Full Text PDFBiomech Model Mechanobiol
July 2011
Pelvic floor dysfunction and pelvic organ prolapse have been associated with damage to the levator ani (LA) muscle, but the exact mechanisms linking them remain unknown. It has been postulated that factors such as vaginal birth and ageing may contribute to long-term, irreversible LA muscle damage. To investigate the biomechanical significance of the LA muscle during childbirth, researchers and clinicians have used finite element models to simulate the second stage of labour.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
There is preliminary evidence that athletes involved in high-intensity sports for sustained periods have a higher probability of experiencing a prolonged second stage of labour compared to non-athletes. The mechanisms responsible for these differences are not clear, although it is postulated that muscle hypertrophy and increased muscle tone in athletes may contribute to difficulties in vaginal delivery. In order to test these hypotheses, we have constructed individual-specific finite element models of the female pelvic floor (one athlete and one non-athlete) and the fetal head to simulate vaginal delivery and enable quantitative analysis of the differences.
View Article and Find Full Text PDF