Introduction: Flow, defined as a heightened state of consciousness characterized by intense concentration during an activity, is influenced primarily by the perceived challenge and the dynamic equilibrium of skills. This investigation focuses on the patterns of flow state attainment and its elicitation mechanisms within the context of piano performance among Chinese music college students.
Methods: Our study establishes a framework for accessing flow, utilizing quantitative data from music ontology to gauge the level of challenge and the level of music acquisition to assess skills.
Biomimetics (Basel)
July 2024
The gait rehabilitation knee exoskeleton is an advanced rehabilitative assistive device designed to help patients with knee joint dysfunction regain normal gait through training and activity support. This paper introduces a design framework based on the process knowledge representation method to optimize the design and control efficiency of the knee exoskeleton. This framework integrates knowledge of design objects and processes, specifically including requirements, functions, principle work areas, and the representation and multi-dimensional dynamic mapping of the Behavior-Structure (RFPBS) matrix, achieving multi-dimensional dynamic mapping of the knee exoskeleton.
View Article and Find Full Text PDFBiomimetics (Basel)
June 2024
Finger technique is a crucial aspect of piano learning, and hand exoskeleton mechanisms effectively assist novice piano players in maintaining correct finger technique consistently. Addressing current issues with exoskeleton robots, such as the inability to provide continuous correction of finger technique and their considerable weight, a novel hand exoskeleton robot has been developed to enhance finger technique through continuous correction and reduced weight. Initial data are gathered using finger joint angle sensors to analyze movements during piano playing, focusing on the trajectory and angular velocity of key strikes.
View Article and Find Full Text PDFObjective: To construct a molecular immune map of patients with systemic sclerosis (SSc) by mass flow cytometry, and compare the number and molecular expression of double-negative T (DNT) cell subsets between patients and healthy controls (HC).
Methods: Peripheral blood mononuclear cells (PBMCs) were extracted from the peripheral blood of 17 SSc patients and 9 HC. A 42-channel panel was set up to perform mass cytometry by time of flight (CyTOF) analysis for DNT subgroups.
Front Endocrinol (Lausanne)
February 2024
Objective: To determine whether there is a causal relationship between thyroid dysfunction and the risk of age-related cataract (ARC) in the European population.
Design: A two-sample Mendelian randomization (MR) study.
Methods: Hypothyroidism, hyperthyroidism, free thyroxine (fT4), and thyrotropin (TSH) were selected as exposures.
ACS Appl Mater Interfaces
January 2023
The development of aqueous zinc-ion batteries (AZIBs) has been severely restricted by metallic Zn anode issues, including Zn dendrites and uncontrollable side reactions. The direct interfacial modification of a Zn anode is a facile and effective strategy that has been favored by researchers. Herein, we propose an acrylic-bonded stationary layer as an artificial solid electrolyte interface (SEI) for the Zn anode to manipulate the Zn plating/stripping.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a chronic autoimmune and inflammatory disease with multiple organs and systems involved such as the kidney, lung, brain and the hematopoietic system. Although increased knowledge of the disease pathogenesis has improved treatment options, current immunosuppressive therapies have failed to prevent disease relapse in more than half of treated patients. Thus, the cell replacement therapy approach that aims to overcome adverse events of traditional treatment and improve recovery rate of refractory SLE is considered as an alternative treatment option.
View Article and Find Full Text PDFPrussian blue analogues (PBAs) as a promising high-voltage cathode material for aqueous zinc-ion batteries (ZIBs) are usually subjected to an ephemeral lifespan and low Coulombic efficiency due to the irreversible phase change and high Zn insertion potential. Besides, Zn dendrites, H evolution reaction, and corrosion derived from a Zn anode interface remain huge challenges. Given this, a highly stable zinc hexacyanoferrate (KZnHCF) cathode together with a mixed concentrated electrolyte is prepared to realize a high-voltage and long-life aqueous ZIB, in which the mixed concentrated electrolyte consisting of 30 m KFSI + 1 m Zn(CFSO) possesses a unique Zn solvation sheath (Zn(CFSO)(FSI)(HO)) that can not only stabilize the cathode interface and improve the Coulombic efficiency but also fundamentally solve the Zn anode interface issues.
View Article and Find Full Text PDFAqueous zinc-ion batteries (ZIBs) have been extensively studied due to their inherent safety and high energy density for large-scale energy storage. However, the practical application is significantly limited by the growing Zn dendrites on metallic Zn anode during cycling. Herein, an environmental biomolecular electrolyte additive, fibroin (FI), is proposed to guide the homogeneous Zn deposition and stabilize Zn anode.
View Article and Find Full Text PDFThe development of aqueous potassium-ion batteries is limited by the lack of suitable anode materials. Here, a novel anode material, iron phosphate hydroxide hydrate FePO(OH)(HO), was introduced and synthesized, which delivers considerable reversible capacities of 80 mA h g at 0.05 A g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Superconcentrated "water-in-salt" electrolytes have greatly widened the electrochemical stable window (ESW) of aqueous electrolytes, but they also generate new problems, including high costs, high viscosity, and low conductivity. Here we report a 2 m low concentration electrolyte using an -dimethylformamide/water (DMF/HO) hybrid solvent, which provides a wider ESW (2.89 V) than an aqueous electrolyte (2.
View Article and Find Full Text PDFAqueous zinc-ion batteries (ZIBs) have emerged as the most promising alternative energy storage system, but the development of a suitable cathode and the issues of Zn anodes have remained challenging. Herein, an effective strategy of high-capacity layered MgVO·HO (MgVO) nanobelts together with a concentrated 3 M Zn(CFSO) polyacrylamide gel electrolyte was proposed to achieve a durable and practical ZIB system. By adopting the designed concentrated gel electrolyte which not only inherits the high-voltage window and wide operating temperature of the concentrated electrolyte but also addresses the Zn dendrite formation problem, the prepared cathode exhibits an ultrahigh capacity of 470 mAh g and a high rate capability of 345 mAh g at 5.
View Article and Find Full Text PDFAllogeneic mesenchymal stem cells (MSCs) exhibit immunoregulatory function in human autoimmune diseases such as systemic lupus erythematosus (SLE), but the underlying mechanisms remain incompletely understood. Here we show that the number of peripheral tolerogenic CD1c dendritic cells (DCs) and the levels of serum FLT3L are significantly decreased in SLE patients especially with lupus nephritis, compared to healthy controls. Transplantation of allogeneic umbilical cord-derived MSCs (UC-MSCs) significantly up-regulates peripheral blood CD1cDCs and serum FLT3L.
View Article and Find Full Text PDFUmbilical cord (UC)-derived mesenchymal stem cells (MSCs) show immunoregulatory properties on various immune cells and display therapeutic effects on various autoimmune diseases such as systemic lupus erythematosus (SLE). The aim of this study was to investigate the effect of the SLE environment on UC MSCs and to identify a potential serum biomarker to predict the therapeutic effect. UC MSCs were cocultured with peripheral blood mononuclear cells (PBMCs) from active lupus patients, and the proliferation, apoptosis and surface markers of UC MSCs were observed.
View Article and Find Full Text PDFThe aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7.
View Article and Find Full Text PDFBackground And Objective: Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown immunoregulation of various immune cells. The aim of this study was to investigate the mechanism of UC MSCs in the regulation of peripheral regulatory T cells (Treg) and T helper 17 (Th17) cells in patients with systemic lupus erythematosus (SLE).
Methods: Thirty patients with active SLE, refractory to conventional therapies, were given UC MSCs infusions.
Background: Notch-1 promotes invasion and metastasis of cancer cells but its role in salivary adenoid cystic carcinoma (SACC) remains unelucidated. Here, we sought to investigate the effect of Notch-1 knockdown on the invasion and metastasis of SACC cells.
Methods: Stable ACC-M cells whose Notch-1 was silenced by lentiviral vectors were established.