Publications by authors named "Xinqiong Li"

CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study.

View Article and Find Full Text PDF

CRISPR-Cas systems with dual functions offer precise sequence-based recognition and efficient catalytic cleavage of nucleic acids, making them highly promising in biosensing and diagnostic technologies. However, current methods encounter challenges of complexity, low turnover efficiency, and the necessity for sophisticated probe design. To better integrate the dual functions of Cas proteins, we proposed a novel approach called CRISPR-Cas Autocatalysis Amplification driven by LNA-modified Split Activators (CALSA) for the highly efficient detection of single-stranded DNA (ssDNA) and genomic DNA.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly defined as non-alcoholic fatty liver disease (NAFLD), is a disorder marked by the excessive deposition of lipids in the liver, giving rise to a spectrum of liver pathologies encompassing steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. Despite the alarming increase in its prevalence, the US Food and Drug Administration has yet to approve effective pharmacological therapeutics for clinical use. MASLD is characterized by the accretion of lipids within the hepatic system, arising from a disarray in lipid provision (whether through the absorption of circulating lipids or lipogenesis) and lipid elimination (via free fatty acid oxidation or the secretion of triglyceride-rich lipoproteins).

View Article and Find Full Text PDF

Numerous preclinical models have been developed to advance biomedical research in type 1 diabetes mellitus (T1DM). They are essential for improving our knowledge of T1DM development and progression, allowing researchers to identify potential therapeutic targets and evaluate the effectiveness of new medications. A deeper comprehension of these models themselves is critical not only to determine the optimal strategies for their utilization but also to fully unlock their potential applications in both basic and translational research.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) has emerged as a global epidemic, and conventional treatment approaches often face limitations in achieving long-term glycemic control and preventing complications. Traditional Chinese Medicine (TCM) offers a valuable alternative for managing T2D, with a long history of effectively using herbal formulations in clinical practice. However, the modular characteristics of these herbs and their specific mechanisms of action remain poorly understood.

View Article and Find Full Text PDF

To investigate the associations of composite dietary antioxidant index (CDAI) with risk of cardiovascular disease (CVD) mortality among individuals with type 2 diabetes (T2D). This prospective cohort study included 7551 patients with T2D who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 through 2018. Death statistics were gathered by connecting the cohort database to the National Death Index through December 31, 2019.

View Article and Find Full Text PDF

Vascular endothelial cells, which make up the inner wall of blood arteries, are susceptible to damage from oxidative stress and apoptosis caused by hyperglycemia. According to certain reports, noncoding RNAs are involved in controlling oxidative stress and apoptosis. ShenQi Compound (SQC), a traditional herbal remedy, has been successfully treating diabetic vascular disease in China for more than 20 years.

View Article and Find Full Text PDF

Interface between neuron cells and biomaterials is the key to real-time sensing, transmitting and manipulating of neuron activities, which are the long-term pursue of scientists and gain intense research focus recently. It is of great interest to develop a sensor with exquisite sensitivity and excellent selectivity for real-time monitoring neurotransmitters transport through single live cell. Sensing techniques including electrode-based methods, optogenetics, and nanowire cell penetration systems have been developed to monitor the neuron activities.

View Article and Find Full Text PDF

Current tools for dNTP analysis mainly rely on expensive fluorescent labeling, mass spectrometry or electrochemistry. Single-molecule assay by protein nanopores with an internal diameter of ca. 1-3.

View Article and Find Full Text PDF

Hairpin structures play an essential role in DNA replication, transcription, and recombination. Single-molecule studies enable the real-time measurement and observation of the energetics and dynamics of hairpin structures, including folding and DNA-protein interactions. Nanopore sensing is emerging as a powerful tool for DNA sensing and sequencing, and previous research into hairpins using an α-hemolysin (α-HL) nanopore suggested that hairpin DNA enters from its stem side.

View Article and Find Full Text PDF

The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 virus is constantly mutating, and researchers used various methods to study these mutations and their clinical relevance.
  • They found 35 significant variants, including one deletion (Δ500-532) in the Nsp1 region, which occurs in over 20% of samples and is linked to more severe disease symptoms.
  • This specific mutation has been identified in 37 countries and results in lower immune responses, suggesting its potential role in diagnosing and developing treatments for COVID-19.
View Article and Find Full Text PDF

Circulating tumor cells (CTCs) have been utilized in the diagnosis and prognosis of tumor. However, the CTC concentration is extremely low to be detected in peripheral blood. Many existing methods suffer from either expensive labeling or complex operation.

View Article and Find Full Text PDF

Nanoscale transport through nanopores and live-cell membranes plays a vital role in both key biological processes as well as biosensing and DNA sequencing. Active translocation of DNA through these nanopores usually needs enzyme assistance. Here we present a nanopore derived from truncated helicase E1 of bovine papillomavirus (BPV) with a lumen diameter of c.

View Article and Find Full Text PDF

The detection of biomarkers requires not only high sensitivity but also different signal reading methods depending on the actual situation. Herein, the luminescent properties of CdTe quantum dots (QDs) were exploited, where CdTe QDs were used as shared signal molecules. Combining multiple types of nucleic acid and chemical signal amplification techniques, and various signal detection techniques, a magnetic nanoparticle (NP) and filter-assisted separation multimode sensing strategy has been developed.

View Article and Find Full Text PDF

is an emerging member of the causing human and animal enteric infections. Antimicrobial resistance among enteropathogens has been reported to be increasing in the past years. The purpose of this study was to investigate antibiotic resistance and resistance genes in isolated from Zigong city, Sichuan province, China.

View Article and Find Full Text PDF

is a newly described and emerging diarrheagenic pathogen responsible for outbreaks of gastroenteritis. Serotyping plays an important role in diagnosis and epidemiological studies for pathogens of public health importance. The diversity of O-antigen biosynthesis gene clusters (O-AGCs) provides the primary basis for serotyping.

View Article and Find Full Text PDF

To explore the effect of porcine epidemic diarrhea virus(PEDV)on microRNA expression profiles of porcine kidney 15cell(PK-15),total RNA was isolated from PK-15 cells with or without PEDV infection. Then, we obtained the miRNAs by using solexa sequencing technology and analyzed these differentially expressed miRNAs. Heatmap cluster analysis and GO (ontology, GO) (Gene function, MF, Molecular) analysis was performed on the significant differences in expression of the miRNA, and 10 significant differences in expression of miRNA were selected by RT-qPCR.

View Article and Find Full Text PDF

Unlabelled: [Image: see text]

Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s12250-015-3632-1 and is accessible for authorized users.

View Article and Find Full Text PDF

Background: Porcine parvovirus (PPV), a member of the Parvoviridae family, causes great economic loss in the swine industry worldwide. MicroRNAs (miRNAs) are a class of non-protein-coding genes that play many diverse and complex roles in viral infections.

Finding: Aiming to determine the impact of PPV infections on the cellular miRNAome, we used high-throughput sequencing to sequence two miRNA libraries prepared from porcine kidney 15 (PK-15) cells under normal conditions and during PPV infection.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV), a mosquito-borne Flavivirus, causes acute viral encephalitis with high morbidity and mortality in humans and animals. MicroRNAs (miRNAs) are small noncoding RNAs that are important modulators of the intricate host-pathogen interaction networks. However, our knowledge of the changes that occur in miRNAs in host cells after JEV infection is still limited.

View Article and Find Full Text PDF

Porcine kobuvirus (PKoV) is associated with swine gastroenteritis, but its pathogenesis is uncertain. In this study, a rapid one-step reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method for the detection of PKoV is developed. A set of four primers specific to six regions within the PKoV 3D gene was designed for the RT-LAMP assay using total RNA extracted from PKoV-infected tissues.

View Article and Find Full Text PDF