Hydration has a profound influence on the structure, dynamics, and functions of membrane and membrane-embedded proteins. So far the hydration response of molecular dynamics of membrane proteins in lipid bilayers is poorly understood. Here, we reveal different hydration dependence of the dynamics in dynamically different domains of membrane proteins by multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy using 121-residue integral diacylglycerol kinase (DAGK) in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) lipid bilayers as a model system.
View Article and Find Full Text PDFβ-amyloid (Aβ) fibrils are the major species involved in Alzheimer's disease (AD). An atomic-resolution molecular structure of Aβ40 fibrils formed in the presence of lipid vesicles was obtained by using magic angle spinning (MAS) solid-state NMR spectroscopy. The fibril structures formed in the presence of the lipid vesicles are remarkably different from those formed in solution.
View Article and Find Full Text PDFSolid-state NMR is a powerful tool for studying membrane proteins in a native-like lipid environment. 3D magic angle spinning (MAS) NMR was employed to characterize the structure of E.coli diacylglycerol kinase (DAGK) reconstituted into its native E.
View Article and Find Full Text PDF