Publications by authors named "Xinqi De"

Bacterium-like particles (BLPs) have gained significant attention in vaccine development due to their potential as effective immune enhancers and antigen delivery systems. BLPs are generated by boiling lactic acid bacteria in an acidic solution and are devoid of proteins and nucleic acids, offering advantages in terms of ease of preparation, high safety, and good stability. Furthermore, by employing protein anchor (PA), heterogeneous antigens can be efficiently displayed on the surface of BLPs, resulting in enhanced delivery effectiveness.

View Article and Find Full Text PDF

The use of biomimetic mineralization strategy is promising to solve the problem of poor stability and immune effect of subunit antigens. However, non-specifically inducing protein mineralization is still a challenge. we hypothesized that rhamnolipids with both protein and metal binding capacity could be used to develop more functional and biocompatible calcium mineralized nanoparticle (RMCP).

View Article and Find Full Text PDF

Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary.

View Article and Find Full Text PDF

Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP).

View Article and Find Full Text PDF

The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation.

View Article and Find Full Text PDF

Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization.

View Article and Find Full Text PDF