Publications by authors named "Xinning Luan"

Low-cost and low-voltage active matrix displays were fabricated by simply patterning gate electrode arrays on a polymer electrolyte (PE)-coated polymer light-emitting diode (PLED). Structurally, a PE capacitor seamlessly stacked on a PLED by sharing a common Al:LiF composite electrode (PEC|PLED). This monolithic integrated organic optoelectronic device was characterized and interpreted as the tunable work function (surface potential) because of the perturbation of accumulated ions on Al:LiF composite electrode by PEC charging and discharging.

View Article and Find Full Text PDF

We report vertical electrolyte-gated red, green, and blue phosphorescent small-molecule organic light-emitting diodes (OLED), in which light emission was modified by tuning the electron injection via electrochemical doping of the electron injection layer 4,4-bis(N-carbazolyl)-1,1-biphenyl (CBP) under the assistance of a polymer electrolyte. These devices comprise an electrolyte capacitor on the top of a conventional OLED, with the interfacial contact between the electrolyte and electron injection layer CBP of OLEDs achieved through a porous cathode. These phosphorescent OLEDs exhibit the tunable luminance between 0.

View Article and Find Full Text PDF

LiMn2O4 suffers from severe capacity degradation when used as a cathode material in rechargeable lithium-ion batteries, especially when cycled at high rates and elevated temperatures. To enhance its high-rate electrochemical performance at elevated temperature (55 degrees C), we use atomic layer deposition (ALD) to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.72 nm) onto micron-sized and nano-sized LiMn2O4 with precise thickness-control at atomic scale.

View Article and Find Full Text PDF