Ellis is abundant in crocin and has a longstanding historical usage both as a dietary and natural ethnic medicine. Enhanced studies have increasingly revealed the intricate interplay between glycolipid metabolism and gut microbiota, wherein their imbalance is regarded as a pivotal indicator of metabolic disorders. Currently, the precise molecular mechanism of the crude extract of crocin from Ellis (GC) targeting gut microbiota to regulate glycolipid metabolism disorder is still unclear.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2024
Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality.
View Article and Find Full Text PDFGlycolipid metabolic disorder is a serious threat to human health. Dark tea is a kind of traditional Chinese tea, which may regulate the glycolipid metabolic disorders. Dark tea extract (DTE) is the water extraction obtained from dark tea.
View Article and Find Full Text PDFObjective: To develop and evaluate a radiomics signature based on magnetic resonance imaging (MRI) from multicenter datasets for identification of invisible basal cisterns changes in tuberculous meningitis (TBM) patients.
Methods: Our retrospective study enrolled 184 TBM patients and 187 non-TBM controls from 3 Chinese hospitals (training dataset, 158 TBM patients and 159 non-TBM controls; testing dataset, 26 TBM patients and 28 non-TBM controls). nnU-Net was used to segment basal cisterns in fluid-attenuated inversion recovery (FLAIR) images.