The current study explores the potential of ultrasound-assisted laser therapy (USaLT) to selectively destroy melanoma cells. The technology was tested on an melanoma model, which was established by growing melanoma cells in chicken breast tissue. Ultrasound-only and laser-only treatments were used as control groups.
View Article and Find Full Text PDFBackground: Atherosclerosis is a condition in which an adhesive substance called plaque accumulates over time inside the arteries. Plaque buildup results in the constriction of arteries, causing a shortage of blood supply to tissues and organs. Removing atherosclerotic plaques controls the development of acute ischemic stroke and heart diseases.
View Article and Find Full Text PDFObjective: Photo-mediated ultrasound therapy (PUT) is a novel antivascular therapeutic modality based on cavitation-induced bioeffects. During PUT, synergistic combinations of laser pulses and ultrasound bursts are used to remove the targeted microvessels selectively and precisely without harming nearby tissue. In the current study, an integrated system combining PUT and spectral domain optical coherence tomography (SD-OCT) was developed, where the SD-OCT system was used to guide PUT by detecting cavitation in real time in the retina of the eye.
View Article and Find Full Text PDFNon-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation.
View Article and Find Full Text PDFPhoto-mediated ultrasound therapy (PUT) is a novel therapeutic technique based on the combination of ultrasound and laser. The underlying mechanism of PUT is the enhanced cavitation effect inside blood vessels. The enhanced cavitation activity can result in bio-effects such as reduced perfusion in microvessels.
View Article and Find Full Text PDFBackground: Maintaining ureteral patency is imperative to preventing renal injury and systemic infection. Ureteral stents are small conduits connecting the kidney and the bladder. They have been widely used to treat ureteral obstructions and ureteral leaks.
View Article and Find Full Text PDFBackground: Age-related macular degeneration (AMD) is a major cause of irreversible central vision loss. The main reason for lost vision due to AMD is choroidal neovascularization (CNV). In the clinic, current treatments for CNV include photodynamic therapy, laser photocoagulation, and anti-vascular endothelial growth factor (VEGF) therapy.
View Article and Find Full Text PDF. Atherosclerosis is the buildup of fats, cholesterol, and other substances on the inner walls of arteries. It can affect arteries of heart, brain, arms, legs, pelvis and kidney, resulting in ischemic heart disease, carotid artery disease, peripheral artery disease and chronic kidney disease.
View Article and Find Full Text PDFSeveral studies have investigated the effect of photo-mediated ultrasound therapy (PUT) on the treatment of neovascularization. This study explores the impact of PUT on the release of the vasoactive agents nitric oxide (NO) and prostacyclin (PGI) from the endothelial cells in an in vitro blood vessel model. In this study, an in vitro vessel model containing RF/6A chorioretinal endothelial cells was used.
View Article and Find Full Text PDFPhoto-mediated ultrasound therapy (PUT) is a novel technique utilizing synchronized ultrasound and laser to generate enhanced cavitation inside blood vessels. The enhanced cavitation inside blood vessels induces bio-effects, which can result in the removal of micro-vessels and the reduction in local blood perfusion. These bio-effects have the potential to treat neovascularization diseases in the eye, such as age-related macular degeneration and diabetic retinopathy.
View Article and Find Full Text PDFObjectives: Retinal neovascularization (RNV) is the growth of abnormal microvessels on the retinal surface and into the vitreous, which can lead to severe vision loss. By combining relatively low-intensity ultrasound and nanosecond-pulse-duration laser, we developed a novel treatment method, namely photo-mediated ultrasound therapy (PUT), which holds a potential to remove RNV with minimal or no damage to the adjacent tissues.
Methods: RNV was created in both albino and pigmented rabbits (n = 10) through a single intravitreal injection with DL-α-aminoadipic acid.
The investigation of neuronal activity in non-human primate models is of critical importance due to their genetic similarity to human brains. In this study, we tested the feasibility of using photoacoustic imaging for the detection of cortical and subcortical responses due to peripheral electrical stimulation in a squirrel monkey model. Photoacoustic computed tomography and photoacoustic microscopy were applied on squirrel monkeys for real-time deep subcortical imaging and optical-resolution cortical imaging, respectively.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
March 2022
Purpose: Conventional photosensitizers for photodynamic therapy (PDT) typically have wide tissue distribution and poor water solubility. A hyaluronic acid (HA) polymeric nanoparticle with specific lymphatic uptake and highly water solubility was developed to deliver pyropheophorbide-a (PPa) for locally advanced head and neck squamous cell carcinoma (HNSCC) treatment.
Methods And Results: PPa was chemically conjugated to the HA polymeric nanoparticle via an adipic acid dihydrazide (ADH) linker.
Purpose: This study aimed to test the feasibility of combined ultrasound and laser technique, namely, ultrasound-assisted endovascular laser thrombolysis (USELT), for thrombolysis by conducting in vivo tests in a rabbit thrombosis model.
Materials And Methods: An acute thrombus was created in the right jugular vein of rabbit and then was treated with ultrasound only, laser only, and USELT to dissolve the blood clot. A total of 20 rabbits were used.
Acoustic cavitation has been widely explored for both diagnostic and therapeutic purposes. Ultrasound-induced cavitation, including inertial cavitation and non-inertial cavitation, can cause microstreaming, microjet, and free radical formation. The acoustic cavitation effects on endothelial cells have been studied for drug delivery, gene therapy, and cancer therapy.
View Article and Find Full Text PDFTransl Vis Sci Technol
December 2020
Purpose: Corneal neovascularization (CNV) is the invasion of new blood vessels into the avascular cornea, leading to reduced corneal transparency and visual acuity, impaired vision, and even blindness. Current treatment options for CNV are limited. We developed a novel treatment method, termed photo-mediated ultrasound therapy (PUT), that combines laser and ultrasound, and we tested its feasibility for treating CNV in a rabbit model.
View Article and Find Full Text PDFPurpose: The combination of laser and ultrasound can significantly improve the efficiency of thrombolysis through an enhanced cavitation effect. We developed a fiber optics-based laser-ultrasound thrombolysis device and tested the feasibility and efficiency of this technology for restoring blood flow in an in vitro blood clot model.
Methods: An in vitro blood flow-clot model was setup, and then an endovascular laser thrombolysis system was combined with high-intensity focused ultrasound to remove the clot.
Annu Int Conf IEEE Eng Med Biol Soc
July 2020
This report describes a novel therapeutic technique called photo-mediated ultrasound therapy (PUT). PUT applies synchronized short pulse duration (nanosecond) laser and ultrasound burst on targeted tissue, offering high-precision localized treatment. PUT is based on controlled induction and promotion of micro-cavitation activity in the target tissue.
View Article and Find Full Text PDFBackground And Objectives: We have developed a novel anti-vascular technique, termed photo-mediated ultrasound therapy (PUT), which utilizes nanosecond duration laser pulses synchronized with ultrasound bursts to remove the microvasculature through cavitation. The objective of the current study is to explore the potential of PUT in removing subcutaneous microvessels.
Study Design/materials And Methods: The auricular blood vessels of two New Zealand white rabbits were treated by PUT with a peak negative ultrasound pressure of 0.
IEEE Trans Biomed Eng
December 2020
Objective: Photo-mediated ultrasound therapy (PUT) is a novel, non-invasive, agent-free, highly selective, and precise anti-vascular technique. PUT removes microvessels through promoting cavitation activity precisely in targeted microvessels by applying synchronized nanosecond laser pulses and ultrasound bursts. The synchronization between laser and ultrasound is critical to the outcome of PUT.
View Article and Find Full Text PDFUnlabelled: Photoacoustic imaging has demonstrated its potential for diagnosis over the last few decades. In recent years, its unique imaging capabilities, such as detecting structural, functional and molecular information in deep regions with optical contrast and ultrasound resolution, have opened up many opportunities for photoacoustic imaging to be used during image-guided interventions. Numerous studies have investigated the capability of photoacoustic imaging to guide various interventions such as drug delivery, therapies, surgeries, and biopsies.
View Article and Find Full Text PDFRecently, new studies have shown that combined laser and ultrasound, or photo-mediated ultrasound therapy (PUT), can enhance cavitation in optically absorptive targets to disrupt tissues through photoacoustic (PA) effect. These studies, including both experimental and theoretical investigations, have largely focused on blood vessels, which are modeled as cylindrically-shaped optical absorbers for PA wave generation and propagation. However, in many clinical situations, target tissues may not be cylindrically-shaped.
View Article and Find Full Text PDFPhoto-mediated ultrasound therapy (PUT) is a novel, noninvasive antimicrovascular approach that can treat neovascularization with high precision. We developed a photoacoustic (PA) sensing (PAS) system for PUT and achieved real-time PAS-guided PUT. Experiments performed on a chicken yolk sac membrane model demonstrated that PAS could monitor the treatment effect in a microvessel during PUT.
View Article and Find Full Text PDFBackground And Objective: Combined laser and ultrasound treatments have been found to have synergistic effects, which may be of particular note in dermatology. We aim to investigate the potential of this technology for dermatology through in vitro and ex vivo experiments.
Methods: In vitro tissue phantoms made of agar and tattoo ink and tattooed ex vivo chicken breast tissue were used.