MYSM1, a deubiquitinating enzyme, plays a pivotal role in diverse biological processes. Both MYSM1 knockout mice and patients with Mysm1 gene mutations exhibit developmental abnormalities across multiple tissues and organs. Serving as a crucial regulator, MYSM1 influences stem cell function, immune responses, and the pathogenesis of diverse diseases.
View Article and Find Full Text PDFS100A4 is primarily expressed in intestinal macrophages, and promotes colonic inflammation and colitis-associated colon tumorigenesis. Smad4 is also expressed in the colon; however, it inhibits colitis-associated cancer (CAC) development. The specific role of Smad4 in S100A4 cells in CAC remains unknown.
View Article and Find Full Text PDFOver the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Metal halide perovskites are promising candidates for gamma-ray (γ-ray) spectrum detectors. However, achieving high-resolution energy spectra in single-photon pulse-height analysis mode remains challenging, due to the inevitable leakage currents degrade the recognizable fingerprint energies which is critical for resolving γ-ray spectroscopy. We demonstrate under high bias voltage, a deficient contact barrier can lead to excessive surface charge injection, thereby increasing leakage current from electrodes to perovskites.
View Article and Find Full Text PDFNeural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells.
View Article and Find Full Text PDFThe outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great harm to all countries worldwide. This disease can be prevented by vaccination and managed using various treatment methods, including injections, oral medications, or aerosol therapies. However, the selection of suitable compounds for the research and development of anti-SARS-CoV-2 drugs is a daunting task because of the vast databases of available compounds.
View Article and Find Full Text PDFThe tumor microenvironment (TME) is crucial for the development of head and neck squamous cell carcinoma (HNSCC). However, the correlation of the characteristics of the TME and the prognosis of patients with HNSCC remains less known. In this study, we calculated the immune and stromal cell scores using the "estimate" R package.
View Article and Find Full Text PDFTolerogenic dendritic cells (tolDCs) facilitate the suppression of autoimmune responses by differentiating regulatory T cells (Treg). The dysfunction of immunotolerance results in the development of autoimmune diseases, such as rheumatoid arthritis (RA). As multipotent progenitor cells, mesenchymal stem cells (MSCs), can regulate dendritic cells (DCs) to restore their immunosuppressive function and prevent disease development.
View Article and Find Full Text PDFNew methods for preparation of chiral alkyl fluorides have been studied intensively in recent years due to the favorable physicochemical and biological properties of those structures. Herein, we describe the regio- and enantioselective allylic alkylation of α-pyridyl-α-fluoroesters with allyl acetates promoted by Cu/Pd synergistic catalysis, constructing the carbon- fluorine quaternary stereocenters. In this co-catalytic system, palladium catalyst mainly constructed the C-C bond, while chiral copper catalyst controlled the enantioselectivity.
View Article and Find Full Text PDFCervical squamous cell carcinoma (CESC) is a prototypical human cancer with well-characterized pathological stages of initiation and progression. However, high-resolution knowledge of the transcriptional programs underlying each stage of CESC is lacking, and important questions remain. We performed single-cell RNA sequencing of 76,911 individual cells from 13 samples of human cervical tissues at various stages of malignancy, illuminating the transcriptional tumorigenic trajectory of cervical epithelial cells and revealing key factors involved in CESC initiation and progression.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a leading cause of disability worldwide. A comprehensive understanding of the molecular mechanisms of this disorder is critical for the therapy of MDD. In this study, it is observed that deubiquitinase Mysm1 is induced in the brain tissues from patients with major depression and from mice with depressive behaviors.
View Article and Find Full Text PDFLiver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-β (TGF-β) during the development and progression of liver fibrosis.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model.
View Article and Find Full Text PDFCatalytic reduction of nitroaromatic compounds using low-cost non-precious metal containing catalyst remains an essential topic in wastewater treatment. Herein, copper hexacyanoferrate nanospheres decorated copper foams (CF) were prepared by a facile method, and it was used as structured catalysts for the reduction of p-nitrophenol (p-NP) and azo dyes. The catalyst obtained by calcination at 200 °C shows the highest catalytic activity, with an almost complete reduction of p-NP within 3 min with a rate of 2.
View Article and Find Full Text PDFA phytochemical study was carried out on the extract of Trillium tschonoskii rhizomes, resulting in the isolation of thirty-six steroidal glycosides (1-36). Their structures were established mainly by spectroscopic analyses as well as necessary chemical evidence, of which 1-25 were identified as new analogues. Herein, all the isolated analogues were screened for the cytotoxicity against intrahepatic cholangiocarcinoma (ICC) cell lines of HuCCT1 and RBE through tumor colony formation and CCK-8 survival analysis, and the results demonstrated that three compounds 9, 12, and 26 significantly repressed tumor colony and sphere formation in both cell lines, respectively.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2022
Aims: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and heterogeneous cancer with a poor prognosis. At present, there is no optimal treatment except for surgical resection, and recurrence after resection will lead to death due to multidrug resistance. Changes in the redox signal have been found to be closely related to the growth and drug resistance of tumor cells.
View Article and Find Full Text PDFBackground: Altered lipid metabolism is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Carnitine palmitoyltransferase 1C (CPT1C) is a member of CPT1 family and plays a key role in cancer development and progression. However, how microRNAs (miRNAs) regulate CPT1C-mediated fatty acid transport and oxidation remains to be elucidated.
View Article and Find Full Text PDFCarbon-based catalysts with heteroatom doping and hollow structures are desired for advanced oxidation processes (AOPs). Herein, dual-shelled Co, N, and S codoped hollow carbon nanocages were developed by wrapping zeolitic imidazolate framework-67 (ZIF-67) with trithiocyanuric acid (TCA) and performing subsequent carbonization. The optimal composite catalyst (Co-NC-CoS) exhibited excellent catalytic performance toward different organic pollutants.
View Article and Find Full Text PDFRational design of metal-free carbon-based heterogeneous catatlyst for wastewater remediation via peroxymonosulfate (PMS) activation is highly desirable. Here, hollow structured porous carbon with abundant N, a high graphitization degree, and a large specific surface area and pore volume (1301 m/g and 1.12 cm/g) was synthesized by the pyrolysis of core-shell structured composites consisting of polystyrene (PS) cores and Zeolitic imidazolate frameworks-8 (ZIF-8) shells.
View Article and Find Full Text PDFPancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome.
View Article and Find Full Text PDFBackground & Aims: Intrahepatic cholangiocarcinoma (ICC) is the second most common liver malignancy. ICC typically features remarkable cellular heterogeneity and a dense stromal reaction. Therefore, a comprehensive understanding of cellular diversity and the interplay between malignant cells and niche cells is essential to elucidate the mechanisms driving ICC progression and to develop therapeutic approaches.
View Article and Find Full Text PDFPancreatic cancer (PC) is recognized as the most aggressive and deadliest malignancy because it has the highest mortality of all cancers in humans. Mutations in multiple tumor suppressors and oncogenes have been documented to be involved in pancreatic cancer progression and metastasis. The upregulation of tetraspanin 1 (TSPAN1), a transmembrane protein, has been reportedly observed in many human cancers.
View Article and Find Full Text PDFFour trinuclear ruthenium carbonyl clusters, (6-BrPyCHRO)Ru(CO) (R = 4-OCHCH, 1a; R = 4-BrCH, 1b) and (2-OCH-HC[double bond, length as m-dash]N-CHR)Ru(CO) (R = 4-OCH, 2a; R = 4-Br, 2b), were synthesized from the reactions of Ru(CO) with the corresponding N,O-bidentate ligands (two pyridyl alcohols and two Schiff bases) respectively in a ratio of 1 : 2. Three new complexes 1b, 2a and 2b have been fully characterized by elemental analysis, FT-IR, NMR and X-ray crystallography. The catalytic activity of these ruthenium complexes for the aerobic oxidation of primary benzylic amines to amides and nitriles in the presence of t-BuOK was investigated, of which the Schiff base complex 2a was found to exhibit the highest activity.
View Article and Find Full Text PDFCobalt-based Zeolitic imidazolate frameworks (ZIFs) have shown a great potential for radical production by activating peroxymonosulfate (PMS). However, improve the stability of ZIFs in the reaction remains a significant challenge. In this work, ZIF-67 was synthesized and protected by coating with a layer of silica, furthermore, the yolk-shell ZIFs@SiO was carbonized under inner gas to obtain the Co containing carbon.
View Article and Find Full Text PDF