(Photo)electrochemical surface reactions in realistic experimental systems occur under a constant-potential condition, while the simulations of electrochemical reactions are mostly performed under a constant-charge condition. A charge-extrapolation scheme proposed by earlier theoretical studies converts constant-charge reaction energies to constant-potential reaction energies for electrochemical reactions on metal surfaces, which is based on a capacitor-model assumption to approximate the surface electrical double layer. However, the charge-extrapolation approach may be problematic when applied to models of photoelectrochemical reactions on semiconductor surfaces with a cross-bandgap Fermi level change along the reaction path.
View Article and Find Full Text PDFA series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure.
View Article and Find Full Text PDF